Skip to main content

Advertisement

Log in

Codelivery of a DNA vaccine and a protein vaccine with aluminum phosphate stimulates a potent and multivalent immune response

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The study explores the possibility of efficiently codelivering DNA vaccines and protein-based vaccines by formulation with aluminum phosphate (AlPO4). When mixed with aluminum adjuvants, plasmid DNA bound tightly onto aluminum hydroxide [Al(OH)3] but not to AlPO4. Different doses of DNA vaccines formulated with AlPO4 [but not Al(OH)3] induced enhanced humoral responses and supported priming of MHC class I restricted cellular immunity. Different proteins mixed with the plasmid DNA vaccine in the AlPO4 formulation did not impair its immunogenicity. Coinjection of two different vaccine-relevant antigens in the same AlPO4 formulation, one as a DNA vaccine and the other as a recombinant protein, elicited polyvalent, humoral, and cellular immune responses to all antigens delivered. The isotype profiles of the induced humoral responses and the cytokine profiles of the specifically primed T cell responses indicated that the combined vaccines supported copriming of Th1- and Th2-biased as well as balanced responses. These findings indicate that the AlPO4 adjuvant, a widely accepted adjuvant in human vaccination practice, can be used to combine protein- and DNA-based vaccination to prime an enhanced and balanced specific immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

CTL :

Cytotoxic T lymphocyte

HBcAg :

Hepatitis B core antigen

HBsAg :

Hepatitis B surface antigen

HEL :

Hen egg lysozyme

IFN :

Interferon

mAb :

Monoclonal antibody

References

  1. Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application and optimization. Annu Rev Immunol 18:927–974

    CAS  PubMed  Google Scholar 

  2. Letvin NL, Barouch DH, Montefiori DC (2002) Prospects for vaccine protection against HIV-1 infection and AIDS. Annu Rev Immunol 20:73–99

    Article  CAS  PubMed  Google Scholar 

  3. Thomson SA, Sherritt MA, Medveczky J, et al (1998) Delivery of multiple CD8 cytotoxic T cell epitopes by DNA vaccination. J Immunol 160:1717–1723

    CAS  PubMed  Google Scholar 

  4. Wang R, Doolan DL, Le TP, et al (1998) Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science 282:476–480

    Article  CAS  PubMed  Google Scholar 

  5. Chen Y, Takimoto T, Liu L, Surman S, Woodland DL (1999) DNA vaccination as a tool to identify subdominant CD8 T cell epitopes. Vaccine 18:720–727

    Article  CAS  PubMed  Google Scholar 

  6. Hassett DE, Slifka MK, Zhang J, Whitton JL (2000) Direct ex vivo kinetic and phenotypic analyses of CD8+ T-cell responses induced by DNA immunization. J Virol 74:8286–9821

    Article  CAS  PubMed  Google Scholar 

  7. Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects Annu Rev Immunol 20:709–760

    Article  CAS  Google Scholar 

  8. Ulmer JB, DeWitt CM, Chastain M, et al (1999) Enhancement of DNA vaccine potency using conventional aluminum adjuvants. Vaccine 18:18–28

    Article  CAS  PubMed  Google Scholar 

  9. Wang S, Liu X, Fisher K, et al (2000) Enhanced type I immune response to a hepatitis B DNA vaccine by formulation with calcium- or aluminum phosphate. Vaccine 18:1227–1235

    Article  CAS  PubMed  Google Scholar 

  10. Ishikawa T, Kono DH, Fowler P, Theofilopoulos AN, Kakumu S, Chisari FV (1998) Polyclonality and multispecificity of the CTL response to a single viral epitope. J Immunol 161:5842–5580

    CAS  PubMed  Google Scholar 

  11. Riedl P, Stober D, Oehninger C, Melber K, Reimann J, Schirmbeck R (2002) Priming Th1 immunity to viral core particles is facilitated by trace amounts of RNA bound to its arginine-rich domain. J Immunol 168:4951–4959

    CAS  PubMed  Google Scholar 

  12. Kwissa M, von Kampen v, Zurbriggen R, Gluck R, Reimann J, Schirmbeck R (2000) Efficient vaccination by intradermal or intramuscular inoculation of plasmid DNA expressing hepatitis B surface antigen under desmin promoter/enhancer control Vaccine 18:2337–2344

  13. Riedl P, Buschle M, Reimann J, Schirmbeck R (2002) Binding immune-stimulating oligonucleotides to cationic peptides from viral core antigen enhances their potency as adjuvants. Eur J Immunol 32:1709–1716

    Article  CAS  PubMed  Google Scholar 

  14. Riedl P, El Kholy S, Reimann J, Schirmbeck R (2002) Priming biologically active antibody responses against an isolated, conformational viral epitope by DNA vaccination. J Immunol 169:1251–1260

    CAS  PubMed  Google Scholar 

  15. Davis HL, Schirmbeck R, Reimann J, Whalen RG (1995) DNA-mediated immunization in mice induces a potent MHC class I-restricted cytotoxic T lymphocyte response to the hepatitis B envelope protein. Hum Gene Ther 6:1447–1456

    CAS  PubMed  Google Scholar 

  16. Schirmbeck R, Boehm W, Ando K-I, Chisari FV, Reimann J (1995) Nucleic acid vaccination primes hepatitis B surface antigen-specific cytotoxic T lymphocytes in nonresponder mice. J Virol 69:5929–5934

    CAS  PubMed  Google Scholar 

  17. Böhm W, Kuhröber A, Paier T, Mertens T, Reimann J, Schirmbeck R (1996) DNA vector constructs that prime hepatitis B surface antigen-specific cytotoxic T lymphocyte and antibody responses in mice after intramuscular injection. J Immunol Methods 193:29–40

    PubMed  Google Scholar 

  18. Krieg AM, Love HL, Yi AK, Harty JT (1998) CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. J Immunol 161:2428–2434

    CAS  PubMed  Google Scholar 

  19. Boehm W, Kuhröber A, Paier T, Mertens T, Reimann J, Schirmbeck R (1996) DNA vector constructs that prime hepatitis B surface antigen-specific cytotoxic T lymphocyte and antibody responses in mice after intramuscular injection. J Immunol Methods 193:29–40

    PubMed  Google Scholar 

  20. Dillon SB, Demuth SG, Schneider MA, et al (1992) Induction of protective class I MHC-restricted CTL in mice by a recombinant influenza vaccine in aluminium hydroxide adjuvant. Vaccine 10:309–318

    Article  CAS  PubMed  Google Scholar 

  21. Carson DA, Raz E (1997) Oligonucleotide adjuvants for T helper 1 (Th1)-specific vaccination. J Exp Med 186:1621–1622

    Article  CAS  PubMed  Google Scholar 

  22. Chu RS, Targoni OS, Krieg AM, Lehmann PV, Harding CV (1997) CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. J Exp Med 186:1623–1631

    CAS  PubMed  Google Scholar 

  23. Schirmbeck R, Reimann J (1999) Enhancing the immunogenicity of exogenous hepatitis B surface antigen-based vaccines for MHC-I-restricted T cells. Biol Chem 380:285–291

    CAS  PubMed  Google Scholar 

  24. Walker PS, Scharton KT, Krieg AM, et al (1999) Immunostimulatory oligodeoxynucleotides promote protective immunity and provide systemic therapy for leishmaniasis via IL-12- and IFN-γ-dependent mechanisms. Proc Natl Acad Sci USA 96:6970–6975

    Article  CAS  PubMed  Google Scholar 

  25. Mosmann TR, Sad S (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17:138–146

    CAS  PubMed  Google Scholar 

  26. Carter LL, Dutton RW (1996) Type 1 and type 2: a fundamental dichotomy for all T-cell subsets. Curr Opin Immunol 8:336–342

    Article  CAS  PubMed  Google Scholar 

  27. Romagnani S (1997) The Th1/Th2 paradigm. Immunol Today 18:263–266

    Article  CAS  PubMed  Google Scholar 

  28. Colonna M (2001) Can we apply the TH1-TH2 paradigm to all lymphocytes? Nat Immunol 2:899–900

    Google Scholar 

  29. Ismail N, Bretscher PA (1999) The Th1/Th2 nature of concurrent immune responses to unrelated antigens can be independent. J Immunol 163:4842–4850

    CAS  PubMed  Google Scholar 

  30. Reimann J, Schirmbeck R (2000) Modulating specific priming of immune effector functions by DNA-based vaccination strategies. Dev Biol (Basel) 104:15–24

    Google Scholar 

Download references

Acknowledgements

The excellent technical assistance of Ms T. Güntert and K. Ölberger are greatly appreciated. We thank Dr. K. Melber (RheinBiotech, Düsseldorf, Germany) for the recombinant HBsAg particles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhold Schirmbeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwissa, M., Lindblad, E.B., Schirmbeck, R. et al. Codelivery of a DNA vaccine and a protein vaccine with aluminum phosphate stimulates a potent and multivalent immune response. J Mol Med 81, 502–510 (2003). https://doi.org/10.1007/s00109-003-0452-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-003-0452-9

Keywords

Navigation