Skip to main content
Log in

Was ist gesichert bei den Zelltherapien?

Möglichkeiten und Grenzen in der Immunonkologie

What is established in cell therapies?

Possibilities and limits in immuno-oncology

  • Schwerpunkt: Was ist gesichert in der Therapie?
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Die Zell- und Gentherapie als Teil der Immunonkologie hat in der Medizin einen wichtigen Stellenwert erreicht. Die Stammzelltransplantation ist nach jahrzehntelanger Erfahrung fest etabliert, mit inzwischen weltweit >1 Mio. durchgeführten Transplantationen. Durch die großen Erfolge der letzten Jahre mit Chimärem-Antigenrezeptor-(CAR)-T-Zellen bei CD19-positiven Leukämien und Lymphomen steigt das Interesse an zellulären Therapien stetig. Das vorliegende Review gibt daher auch einen Überblick über Donorlymphozyten, antigenspezifische T‑Zellen, regulatorische T‑Zellen, Natürliche-Killer(NK)-Zellen, mesenchymale Stroma- und induzierte pluripotente Stammzellen (iPS) in der Immunonkologie.

Abstract

Cell and gene therapy as part of immuno-oncology has reached an important milestone in medicine. After decades of experience stem cell transplantation is well established with worldwide >1 million transplantations to date. Due to the improved success of the last years using chimeric antigen receptor (CAR) T cells for CD19 positive leukemia and lymphomas, the interest in cellular therapies is continuously increasing. The current review also gives a short overview about donor lymphocytes, antigen-specific T cells, regulatory T cells, natural killer (NK) cells, mesenchymal stromal cells and induced pluripotent stem (iPS) cells in immuno-oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Barrett AJ, Horowitz MM, Pollock BH, Zhang MJ, Bortin MM, Buchanan GR, Camitta BM, Ochs J, Graham-Pole J, Rowlings PA (1994) Bone marrow transplants from HLA-identical siblings as compared with chemotherapy for children with acute lymphoblastic leukemia in a second remission. N Engl J Med 331:1253–1258

    Article  CAS  Google Scholar 

  2. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, Rimm AA, Ringdén O, Rozman C, Speck B (1990) Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75:555–562

    CAS  PubMed  Google Scholar 

  3. Huenecke S, Bremm M, Cappel C, Esser R, Quaiser A, Boenig H, Jarisch A, Soerensen J, Klingebiel T, Bader P, Koehl U (2016) Optimization of individualized graft composition: CD3/CD19 depletion combined with CD34 selection for haploidentical transplantation. Transfusion 56:2336–2345

    Article  CAS  Google Scholar 

  4. Bethge WA, Faul C, Bornhauser M, Stuhler G, Beelen DW, Lang P, Stelljes M, Vogel W, Hägele M, Handgretinger R, Kanz L (2008) Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: an update. Blood Cells Mol Dis 40:13–19

    Article  CAS  Google Scholar 

  5. Klingebiel T, Handgretinger R, Lang P, Bader P, Niethammer D (2004) Haploidentical transplantation for acute lymphoblastic leukemia in childhood. Blood Rev 18:181–192

    Article  Google Scholar 

  6. van Rhee F, Kolb HJ (1995) Donor leukocyte transfusions for leukemic relapse. Curr Opin Hematol 2(6):423–430

    Article  Google Scholar 

  7. Leen AM, Tripic T, Rooney CM (2010) Challenges of T cell therapies for virus-associated diseases after hematopoietic stem cell transplantation. Expert Opin Biol Ther 10(3):337–351. https://doi.org/10.1517/14712590903456003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peggs KS, Mackinnon S (2004) Cytomegalovirus: the role of CMV post-haematopoietic stem cell transplantation. Int J Biochem Cell Biol 36(4):695–701

    Article  CAS  Google Scholar 

  9. Feucht J, Opherk K, Lang P, Kayser S, Hartl L, Bethge W, Matthes-Martin S, Bader P, Albert MH, Maecker-Kolhoff B, Greil J, Einsele H, Schlegel PG, Schuster FR, Kremens B, Rossig C, Gruhn B, Handgretinger R, Feuchtinger T (2015) Adoptive T‑cell therapy with hexon-specific Th1 cells as a treatment of refractory adenovirus infection after HSCT. Blood 125(12):1986–1994. https://doi.org/10.1182/blood-2014-06-573725

    Article  CAS  PubMed  Google Scholar 

  10. Schultze-Florey RE, Tischer S, Kuhlmann L, Hundsdoerfer P, Koch A, Anagnostopoulos I, Ravens S, Goudeva L, Schultze-Florey C, Koenecke C, Blasczyk R, Koehl U, Heuft HG, Prinz I, Eiz-Vesper B, Maecker-Kolhoff B (2018) Dissecting Epstein-Barr virus-specific T‑cell responses after Allogeneic EBV-specific T‑cell transfer for central nervous system posttransplant lymphoproliferative disease. Front Immunol 9:1475. https://doi.org/10.3389/fimmu.2018.01475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tischer S, Priesner C, Heuft HG, Goudeva L, Mende W, Barthold M, Klöß S, Arseniev L, Aleksandrova K, Maecker-Kolhoff B, Blasczyk R, Koehl U, Eiz-Vesper B (2014) Rapid generation of clinical-grade antiviral T cells: selection of suitable T‑cell donors and GMP-compliant manufacturing of antiviral T cells. J Transl Med 12(1):336–316

    Article  Google Scholar 

  12. Eshhar Z, Waks T, Gross G, Schindler DG (1993) Specific activation and targeting of Cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma-subunit or zeta-subunit of the immunoglobulin and T‑cell receptors. Proc Natl Acad Sci Usa 90(2):720–724

    Article  CAS  Google Scholar 

  13. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3(95):95ra73

    Article  CAS  Google Scholar 

  14. Chmielewski M, Abken H (2015) TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther 15(8):1145. https://doi.org/10.1517/14712598.2015.1046430

    Article  CAS  PubMed  Google Scholar 

  15. Köhl U, Arsenieva S, Holzinger A, Abken H (2018) CAR T cells in trials: recent achievements and challenges that remain in the production of modified T cells for clinical applications. Hum Gene Ther. https://doi.org/10.1089/hum.2017.254

    Article  PubMed  Google Scholar 

  16. Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S, Butler K, Rivat C, Wright G, Somana K, Ghorashian S, Pinner D, Ahsan G, Gilmour K, Lucchini G, Inglott S, Mifsud W, Chiesa R, Peggs KS, Chan L, Farzeneh F, Thrasher AJ, Vora A, Pule M, Veys P (2017) Molecular remission of infant B‑ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med 9(374):eaaj2013. https://doi.org/10.1126/scitranslmed.aaj2013 (Erratum in: Sci Transl Med. 2017 Feb 15;9(377):null.)

    Article  PubMed  Google Scholar 

  17. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers GD, Qayed M, De Moerloose B, Hiramatsu H, Schlis K, Davis KL, Martin PL, Nemecek ER, Yanik GA, Peters C, Baruchel A, Boissel N, Mechinaud F, Balduzzi A, Krueger J, June CH, Levine BL, Wood P, Taran T, Leung M, Mueller KT, Zhang Y, Sen K, Lebwohl D, Pulsipher MA, Grupp SA (2018) Tisagenlecleucel in children and young adults with B‑cell Lymphoblastic leukemia. N Engl J Med 378(5):439–448. https://doi.org/10.1056/NEJMoa1709866

    Article  CAS  PubMed  Google Scholar 

  18. https://clinicaltrials.gov, abgerufen am 14.09.2018

  19. Friedman KM, Garrett TE, Evans JW, Horton HM, Latimer HJ, Seidel SL, Horvath CJ, Morgan RA (2018) Effective targeting of multiple B‑cell maturation antigen-expressing hematological malignances by anti-B-cell maturation antigen chimeric antigen receptor T cells. Hum Gene Ther 29(5):585–601. https://doi.org/10.1089/hum.2018.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562):2097–2100

    Article  CAS  Google Scholar 

  21. Granzin M, Wagner J, Köhl U, Cerwenka A, Huppert V, Ullrich E (2017) Shaping of natural killer cell antitumor activity by ex vivo cultivation. Front Immunol 8:458. https://doi.org/10.3389/fimmu.2017.00458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koehl U, Kaberer C, Spanholtz J, Lee DA, Miller JS, Cooley S, Lowdell M, Uharek L, Klingemann H, Curti A, Leung W, Alici E (2016) Advances in clinical NK cell studies: donor selection, manufacturing and quality control. Oncoimmunology 5(4):e1115178

    Article  CAS  Google Scholar 

  23. Malmberg KJ, Carlsten M, Björklund A, Sohlberg E, Bryceson YT, Ljunggren HG (2017) Natural killer cell-mediated immunosurveillance of human cancer. Semin Immunol 31:20–29. https://doi.org/10.1016/j.smim.2017.08.002

    Article  CAS  PubMed  Google Scholar 

  24. Mehta RS, Rezvani K (2018) Chimeric antigen receptor expressing natural killer cells for the immunotherapy of cancer. Front Immunol 9:283. https://doi.org/10.3389/fimmu.2018.00283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trento C, Bernardo ME, Nagler A, Kuçi S, Bornhäuser M, Köhl U, Strunk D, Galleu A, Sanchez-Guijo F, Gaipa G, Introna M, Bukauskas A, Le Blanc K, Apperley J, Roelofs H, Van Campenhout A, Beguin Y, Kuball J, Lazzari L, Avanzini MA, Fibbe W, Chabannon C, Bonini C, Dazzi F (2018) Manufacturing mesenchymal stromal cells for the treatment of graft-versus-host disease: a survey among centers affiliated with the European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. https://doi.org/10.1016/j.bbmt.2018.07.015

    Article  PubMed  Google Scholar 

  26. Romano M, Tung SL, Smyth LA, Lombardi G (2017) Treg therapy in transplantation: a general overview. Transpl Int 30(8):745–753. https://doi.org/10.1111/tri.12909

    Article  CAS  PubMed  Google Scholar 

  27. Regulation (EC) No 1394/2007 Of The European Parliament And Of The Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004. Official Journal of the European Union.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Köhl.

Ethics declarations

Interessenkonflikt

A. Quaiser und U. Köhl geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

H. Haller, Hannover

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quaiser, A., Köhl, U. Was ist gesichert bei den Zelltherapien?. Internist 59, 1230–1238 (2018). https://doi.org/10.1007/s00108-018-0516-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-018-0516-0

Schlüsselwörter

Keywords

Navigation