Skip to main content
Log in

Akute myeloische Leukämie

Acute myeloid leukemia

  • Schwerpunkt
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Weiterentwickelte molekulare Techniken haben in den letzten Jahren wesentlich zur Identifizierung und Charakterisierung der molekularen Heterogenität der akuten myeloischen Leukämie (AML) beigetragen. Dabei haben sie wichtige Einblicke in die Pathogenese ermöglicht. Die genetische Diagnostik ist für die Klassifikation, die Prognoseabschätzung und mittlerweile auch für die Wahl der Therapie unverzichtbar. Wesentliche Voraussetzung für einen genotypspezifischen Therapieansatz ist eine rasche, prätherapeutische molekulargenetische Diagnostik, die neben der Bestimmung der rekurrenten AML-assoziierten Genfusionen auch die Mutationsanalyse der Gene NPM1, FLT3 und CEBPA beinhaltet. Ein Teil dieser molekularen Marker kann für das Monitoring der minimalen Resterkrankung verwendet werden und liefert somit zusätzliche klinisch relevante Informationen. Für bestimmte genetisch definierte Subgruppen sind zunehmend molekular zielgerichtete Therapien verfügbar. Sehr solide Daten liegen zur Kombinationstherapie mit All-trans-Retinsäure und Arsentrioxid bei der akuten Promyelozytenleukämie vor; bei Patienten mit Niedrig- und Intermediärrisiko-AML konnte durch die Hinzunahme des Immuntoxins Gemtuzumab-Ozogamicin (GO) sowohl das rezidivfreie als auch das Gesamtüberleben signifikant verbessert werden. Kombinationstherapien mit Tyrosinkinaseinhibitoren werden aktuell bei der AML mit FLT3-Mutation und bei der Core-binding-factor-AML klinisch geprüft. Neue Therapieansätze adressieren Mutationen oder Alterationen in epigenetischen Regulatoren, z. B. mit IDH1/2-Hemmern oder Inhibitoren der Methyltransferase DOT1L. Die vollständige Charakterisierung der genetischen bzw. epigenetischen Mechanismen der AML ist eine wesentliche Voraussetzung für die Entwicklung weiterer zielgenauer Substanzen, mit denen die Therapieergebnisse und somit die Prognose verbessert werden sollen.

Abstract

In recent years, the development of novel molecular techniques has been instrumental in deciphering the genetic heterogeneity of acute myeloid leukemia (AML) as well as in gaining important insights into the pathomechanisms of AML. Genetic diagnostics has become an essential component in the initial work-up for disease classification, prognostication, and genotype-specific therapies. A major prerequisite for such individualized treatment strategies is a rapid pretherapeutic genetic analysis, which includes screening for the recurrent AML-associated gene fusions as well as mutations in the genes NPM1, FLT3, and CEBPA. Some of these molecular markers can be used for monitoring minimal residual disease and therefore provide clinically relevant information. There is an increasing number of promising molecularly targeted therapies in clinical development for distinct genetic AML subgroups. Solid data exist for the combination of all-trans retinoic acid and arsentrioxid in the treatment of acute promyelocytic leukemia; the addition of the immunoconjugate gemtuzumab ozogamicin (GO) to induction therapy has been shown to improve outcome in cytogenetic low- and intermediate-risk AML. Furthermore, there are encouraging data on the combination of intensive chemotherapy with tyrosine kinase inhibitors in patients with AML harboring FLT3 mutations or with core-binding factor AML. Other novel therapeutic approaches address mutations or alterations in epigenetic regulators, such as IDH or DOT1L inhibitors. The comprehensive characterization of the underlying genetic mechanisms is essential for the development of novel target-specific compounds with the aim of improving outcome in AML patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Abbas S, Lugthart S, Kavelaars FG et al (2010) Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood 116:2122–2126

    Article  CAS  PubMed  Google Scholar 

  2. Becker H, Marcucci G, Maharry K et al (2010) Favorable prognostic impact of NPM1 mutations in older patients with cytogenetically normal de novo acute myeloid leukemia and associated gene- and microRNA-expression signatures: a Cancer and Leukemia Group B study. J Clin Oncol 28:596–604

  3. Bernt KM, Zhu N, Sinha AU et al (2011) MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20:66–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Burnett AK, Hills RK, Milligan D et al (2011) Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamicin: results of the MRC AML15 trial. J Clin Oncol 29:369–377

  5. Burnett AK, Russell NH, Hills RK et al (2013) Optimization of chemotherapy for younger patients with acute myeloid leukemia: results of the medical research council AML15 trial. J Clin Oncol 31:3360–3368

  6. Cancer Genome Atlas Research Network (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368:2059–2074

  7. Corbacioglu A, Scholl C, Schlenk RF et al (2010) Prognostic impact of minimal residual disease in CBFB-MYH11-positive acute myeloid leukemia. J Clin Oncol 28:3724–3729

  8. Döhner H, Estey EH, Amadori S et al (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115:453–474

    Article  PubMed  Google Scholar 

  9. Dombret H, Seymour JF, Butrym A et al (2014) Results of a phase 3, multicenter, randomized, open-label study of azacitidine (AZA) vs conventional care regimens (CCR) in older patients with newly diagnosed acute myeloid leukemia (AML). Haematologica (EHA Annual Meeting Abstracts):#6212

  10. Faith H, Levis M (2011) FLT3 inhibitors: a story of the old and the new. Curr Opin Hematol 18:71–76

    Article  Google Scholar 

  11. Gale RE, Green C, Allen C et al (2008) The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 111:2776–2784

    Article  CAS  PubMed  Google Scholar 

  12. Jaiswal S, Fontanillas P, Flannick J et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498

  13. Juliusson G, Antunovic P, Derolf A et al (2009) Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood 113:4179–4187

    Article  CAS  PubMed  Google Scholar 

  14. Kayser S, Schlenk RF, Londono MC et al (2009) Insertion of FLT3 internal tandem duplication in the tyrosine kinase domain-1 is associated with resistance to chemotherapy and inferior outcome. Blood 114:2386–2392

    Article  CAS  PubMed  Google Scholar 

  15. Krönke J, Schlenk RF, Jensen KO et al (2011) Monitoring of minimal residual disease in NPM1 mutated acute myeloid leukemia: a study of the German-Austrian AML Study Group (AMLSG). J Clin Oncol 29:2709–2716

  16. Lo-Coco F, Avvisati G, Vignetti M et al (2013) Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 369:111–121

  17. Marcucci G, Haferlach T, Döhner H (2011) Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol 29:475–486

  18. Miyawaki S, Ohtake S, Fujisawa S et al (2011) A randomized comparison of 4 courses of standard dose multiagent chemotherapy versus 3 courses of high-dose cytarabine alone in postremission therapy for acute myeloid leukemia in adults: the JALSG AML201 study. Blood 117:2366–2372

    Article  CAS  PubMed  Google Scholar 

  19. Paschka P, Schlenk RF, Gaidzik VI et al (2010) IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 28:3636–3643

  20. Paschka P, Döhner K (2013) Core-binding factor acute myeloid leukemia: can we improve on HiDAC consolidation? Hematology Am Soc Hematol Educ Program 2013:209–219

    Article  PubMed  Google Scholar 

  21. Quintás-Cardama A, Ravandi F, Liu-Dumlao T et al (2012) Epigenetic therapy is associated with similar survival compared with intensive chemotherapy in older patients with newly diagnosed acute myeloid leukemia. Blood 120:4840–4845

    Article  PubMed Central  PubMed  Google Scholar 

  22. Rowe JM, Löwenberg B (2013) Gemtuzumab ozogamicin in acute myeloid leukemia: a remarkable saga about an active drug. Blood 121:4838–4841

    Article  CAS  PubMed  Google Scholar 

  23. Sanz MA, Grimwade D, Tallman MS et al (2009) Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 113:1875–1891

    Article  CAS  PubMed  Google Scholar 

  24. Schlenk RF, Döhner K, Krauter J et al (2008) Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 358:1909–1918

  25. Schlenk RF, Döhner K, Kneba M et al (2009) Gene mutations and response to treatment with all-trans retinoic acid in elderly patients with acute myeloid leukemia. Results from the AMLSG Trial AML HD98B. Haematologica 94:54–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Schlenk RF, Döhner K, Krauter J et al (2011) All-trans retinoic acid improves outcome in younger adult patients with nucleophosmin-1 mutated acute myeloid leukemia – results of the AMLSG 07-04 randomized treatment trial. Blood (ASH Annual Meeting Abstracts) 118:80

  27. Schlenk RF, Kayser S, Bullinger L et al (2014) Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood 124:3441–3449

    Article  CAS  PubMed  Google Scholar 

  28. Stone RM, Fischer T, Paquette R et al (2012) Phase 1B study of the FLT3 kinase inhibitor midostaurin with chemotherapy in younger newly diagnosed adult patients with acute myeloid leukemia. Leukemia 26:2061–2068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Swerdlow SH, Campo E, Harris NL et al (Hrsg) (2008) WHO classification of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. P. Paschka gibt an, dass kein Interessenkonflikt besteht. K. Döhner: Beratungstätigkeit für Novartis und Bristol-Myers Squibb; Unterstützung klinischer Studien durch Novartis und Celgene. H. Döhner: Beratungstätigkeit für Agios, Astellas, Astex Pharmaceuticals, Boehringer Ingelheim, Celgene, Bristol-Myers Squibb, GlaxoSmithKline, Lilly, Mundipharma, Novartis, Lilly, Roche, Seattle Genetics und Tolero.

Alle im vorliegenden Manuskript beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Döhner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Döhner, K., Paschka, P. & Döhner, H. Akute myeloische Leukämie. Internist 56, 354–363 (2015). https://doi.org/10.1007/s00108-014-3596-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-014-3596-5

Schlüsselwörter

Keywords

Navigation