Skip to main content
Log in

Regenerative Therapien in der Nephrologie

Reparatur oder Neubau?

Regenerative therapy in nephrology

Repair or construction?

  • Schwerpunkt: Niereninsuffizienz
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Tierexperimentelle Untersuchungen sowie Analysen humanen Nierengewebes weisen darauf hin, dass die Regeneration von untergegangenen Tubuluszellen durch benachbarte, überlebende Tubuluszellen erfolgt. Die Tubuszellen der geschädigten Niere haben eine hohe Regenerationsfähigkeit und können je nach Ausmaß der edithalen Schädigung vollständig wiederhergestellt werden. Entdifferenzierung, Migration, Proliferation und Redifferenzierung werden durch lokale Wachstumsfaktoren reguliert. Auch renale Stammzellen können an diesem Prozess beteiligt sein. Für eine Nierenregeneration sind mesenchymale Stammzellen von entscheidender Bedeutung. Falls in der adulten Niere noch vorhanden, könnten sie das Ausgangsmaterial für Reparatur und Regeneration nach Verletzung darstellen. Die genaue Lokalisation und Rolle der bisher in der Niere nachgewiesenen residenten mesenchymalen Stammzellen ist weiterhin unklar. Neue Oberflächenmarker und eine bessere Charakterisierung der möglicherweise zahlreichen am Regenerationsprozess beteiligten Zellpopulationen sind nötig, um deren komplexe Interaktionen aufzuklären. Unklar ist, ob auch mesenchymale Stammzellen aus dem Knochenmark oder anderen Organen beteiligt sind. Neben der strukturellen Regeneration kommt den Stammzellen auch eine Rolle bei der funktionellen Erholung nach akutem Nierenversagen zu. Wegen ihrer funktionellen und räumliche Komplexität ist der artifizielle Neubau einer menschlichen Niere schwierig. Durch zusätzliche Verwendung von Zellen in Dialysegeräten lassen sich aber evtl. die Qualität der Filtration verbessern und auch andere Nierenfunktionen ersetzen. Erste Ergebnisse zum Einsatz dieser neuen Technik in klinischen Phase-I/II-Studien an Patienten mit akutem Nierenversagen sind erfolgversprechend. Trotz der Zunahme unseres Verständnisses der Stammzellbiologie und des Reparaturprozesses in der Niere ist die Stammzelltherapie zurzeit noch ein experimenteller Ansatz, und zusätzliche Untersuchungen müssen durchgeführt werden, bevor die Stammzelltherapie in der Nephrologie in die Klinik eingeführt werden kann.

Abstract

Animal experiments and analyses of human renal tissues show that regeneration of degraded renal tubules is caused by adjacent surviving tubules. Differentiation, migration, proliferation and redifferentiation are regulated by local growth factors. Renal stem cells can also participate in this process. Mesenchymal stem cells play a pivotal role in renal regeneration and if these are still present in the adult kidney, they could be the source material for repair and regeneration following injury. The exact location and role of resident mesenchymal stem cells which have been demonstrated in the kidneys is still unclear. New surface markers and a better characterisation of the many cell populations possibly participating in the regeneration process are necessary in order to clarify their complex interaction. It is also unclear whether mesenchymal stem cells from bone marrow or other organs are also involved. In addition to structural regeneration, the stem cells also play a role in the functional recovery following acute renal failure. Artificial regeneration of human kidneys is difficult due to their functional and spatial complexity. By the additional use of cells in dialysis machines it may be possible to improve the quality of filtration and also replace other renal functions. Initial results using this new technique in clinical phase I/II studies on patients with acute renal failure are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Bonventre JV (2003) Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol 14: S55–S61

    Article  PubMed  Google Scholar 

  2. Schena FP (1998) Role of growth factors in acute renal failure. Kidney Int 66 (Suppl): S11–S15

    CAS  Google Scholar 

  3. Vainio S, Muller U (1997) Inductive tissue interactions, cell signaling, and the control of kidney organogenesis. Cell 90: 975–978

    Article  PubMed  CAS  Google Scholar 

  4. Elger M et al. (2003) Nephrogenesis is induced by partial nephrectomy in the elasmobranch Leucoraja erinacea. J Am Soc Nephrol 14: 1506–1518

    Article  PubMed  Google Scholar 

  5. Oliver JA et al. (2004) The renal papilla is a niche for adult kidney stem cells. J Clin Invest 114: 795–804

    Article  PubMed  CAS  Google Scholar 

  6. Hishikawa K et al. (2005) Musculin/MyoR is expressed in kidney side population cells and can regulate their function. J Cell Biol 169: 921–928

    Article  PubMed  CAS  Google Scholar 

  7. Bussolati B et al. (2005) Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166: 545–555

    PubMed  CAS  Google Scholar 

  8. Challen GA et al. (2004) Identifying the molecular phenotype of renal progenitor cells. J Am Soc Nephrol 15: 2344–2357

    Article  PubMed  CAS  Google Scholar 

  9. Javazon EH et al. (2004) Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32: 414–425

    Article  PubMed  CAS  Google Scholar 

  10. Gronthos S et al. (2003) Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 116: 1827–1835

    Article  PubMed  CAS  Google Scholar 

  11. Reyes M et al. (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109: 337–346

    Article  PubMed  CAS  Google Scholar 

  12. Krause DS et al. (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105: 369–377

    Article  PubMed  CAS  Google Scholar 

  13. Kale S et al. (2003) Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 112: 42–49

    Article  PubMed  CAS  Google Scholar 

  14. Togel F et al. (2005) Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int 67: 1772–1784

    Article  PubMed  Google Scholar 

  15. Bonventre JV, Zuk A (2004) Ischemic acute renal failure: an inflammatory disease? Kidney Int 66: 480–485

    Article  PubMed  CAS  Google Scholar 

  16. Gupta S et al. (2002) A role for extrarenal cells in the regeneration following acute renal failure. Kidney Int 62: 1285–1290

    Article  PubMed  Google Scholar 

  17. Duffield JS et al. (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115: 1743–1755

    Article  PubMed  CAS  Google Scholar 

  18. Poulsom R et al. (2001) Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 195: 229–235

    Article  PubMed  CAS  Google Scholar 

  19. Fang TC et al. (2005) Proliferation of bone marrow-derived cells contributes to regeneration after folic acid-induced acute tubular injury. J Am Soc Nephrol 16: 1723–1732

    Article  PubMed  CAS  Google Scholar 

  20. Lin F et al. (2005) Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 115: 1756–1764

    Article  PubMed  CAS  Google Scholar 

  21. Anjos-Afonso F et al. (2004) In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci 117: 5655–5664

    Article  PubMed  CAS  Google Scholar 

  22. Szczypka MS et al. (2005) Rare incorporation of bone marrow-derived cells into kidney after folic acid-induced injury. Stem Cells 23: 44–54

    Article  PubMed  CAS  Google Scholar 

  23. Yokoo T et al. (2005) Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues. Proc Natl Acad Sci USA 102: 3296–3300

    Article  PubMed  CAS  Google Scholar 

  24. Morigi M et al. (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15: 1794–1804

    Article  PubMed  Google Scholar 

  25. Herrera MB et al. (2004) Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med 14: 1035–1041

    PubMed  Google Scholar 

  26. Togel F et al. (2005) Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 289: F31–42

    Article  PubMed  Google Scholar 

  27. Togel F et al. (2004) Hematopoietic stem cell mobilization-associated granulocytosis severely worsens acute renal failure. J Am Soc Nephrol 15: 1261–1267

    Article  PubMed  Google Scholar 

  28. Stokman G et al. (2005) Hematopoietic stem cell mobilization therapy accelerates recovery of renal function independent of stem cell contribution. J Am Soc Nephrol 16: 1684–1692

    Article  PubMed  CAS  Google Scholar 

  29. Iwasaki M et al. (2005) Mobilization of bone marrow cells by G-CSF rescues mice from cisplatin-induced renal failure, and M-CSF enhances the effects of G-CSF. J Am Soc Nephrol 16: 658–666

    Article  PubMed  CAS  Google Scholar 

  30. Lange C, Togel F, Ittrich H et al. (2005) Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int 68: 1613–1617

    Article  PubMed  Google Scholar 

  31. Rookmaaker MB, Smits AM, Tolboom H et al. (2003) Bone-marrow-derived cells contribute to glomerular endothelial repair in experimental glomerulonephritis. Am J Pathol 163: 553–562

    PubMed  Google Scholar 

  32. Ito T, Suzuki A, Imai E et al. (2001) Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol 12: 2625–2635

    PubMed  CAS  Google Scholar 

  33. Kunter U, Rong S, Djuric Z et al. (2006) Transplanted mesenchymal stem cells accelerate glomerular healing in experimental glomerulonephritis. J Am Soc Nephrol 17: 2202–2212

    Article  PubMed  CAS  Google Scholar 

  34. Kunter U, Rong S, Boor P et al. (2007) Mesenchymal stem cells prevent progressive experimental renal failure but maldifferentiate into glomerular adipocytes. J Am Soc Nephrol 18: 1754–1764

    Article  PubMed  CAS  Google Scholar 

  35. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105: 1815–1822

    Article  PubMed  CAS  Google Scholar 

  36. Sharples EJ et al. (2004) Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion. J Am Soc Nephrol 15: 2115–2124

    Article  PubMed  CAS  Google Scholar 

  37. Patel NS et al. (2004) Pretreatment with EPO reduces the injury and dysfunction caused by ischemia/reperfusion in the mouse kidney in vivo. Kidney Int 66: 983–989

    Article  PubMed  CAS  Google Scholar 

  38. Harada M et al. (2005) G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 11: 305–311

    Article  PubMed  CAS  Google Scholar 

  39. Humes HD (2000) Bioartificial kidney for full renal replacement therapy. Semin Nephrol 20: 71–82

    PubMed  CAS  Google Scholar 

  40. Humes HD, MacKay SM, Funke AJ et al. (1999) Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics. Kidney Int 55: 2502–2514

    Article  PubMed  CAS  Google Scholar 

  41. Humes HD, Weitzel WF, Bartlett RH et al. (2004) Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure. Kidney Int 66: 1578–1588

    Article  PubMed  CAS  Google Scholar 

  42. Yoo JJ, Atala A (2000) Tissue engineering applications in the genitourinary tract system. Yonsei Med J 41: 789–802

    PubMed  CAS  Google Scholar 

  43. Humes HD, Fissell WH, Weitzel WF et al. (2002) Metabolic replacement of kidney function in uremic animals with a bioartificial kidney containing human cells. Am J Kidney Dis 39: 1078–1087

    Article  PubMed  Google Scholar 

  44. Hammerman MR (2004) Organogenesis of kidneys following transplantation of renal progenitor cells. Transpl Immunol 12: 229–239

    Article  PubMed  CAS  Google Scholar 

  45. Dekel B, Amariglio N, Kaminski N et al. (2002) Engraftment and differentiation of human metanephroi into functional mature nephrons after transplantation into mice is accompanied by a profile of gene expression similar to normal human kidney development. J Am Soc Nephrol 13: 977–990

    PubMed  CAS  Google Scholar 

  46. Hammerman MR (2002) Transplantation of embryonic kidneys. Clin Sci 103: 599–612

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Haller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haller, H. Regenerative Therapien in der Nephrologie. Internist 48, 813–818 (2007). https://doi.org/10.1007/s00108-007-1910-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-007-1910-1

Schlüsselwörter

Keywords

Navigation