Skip to main content
Log in

Funktionelle Dynamik des rechten Ventrikels und des Lungenkreislaufes bei obstruktiver Schlafapnoe

Therapeutische Konsequenzen

Functional dynamics of the right ventricle and pulmonary circulation in obstructive sleep apnea

Therapeutic consequences

  • Schwerpunkt: Der kranke rechte Ventrikel
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Alleine in Deutschland leiden mindestens 500.000 Menschen an dem durch die Leitsymptome Tagesmüdigkeit, morgendliche Kopfschmerzen und nächtliches Schnarchen charakterisierten obstruktiven Schlafapnoesyndrom (OSAS). Dabei ist die Prognose mutmaßlich durch kardiovaskuläre Komplikationen bestimmt. Während es bei diesen Patienten regelhaft während der Nacht zu pulmonalarteriellen Druckerhöhungen kommt, besteht bei etwa jedem 5. Patienten eine am Tage persistierende pulmonalarterielle Hypertonie, bei jedem 4.—am ehesten als Folge der nächtlichen Druckerhöhung—eine eingeschränkte rechtsventrikuläre Funktion. Tierexperimentelle und klinische Studien konnten darüber hinaus zeigen, dass die intermittierende Hypoxie mit der Entwicklung einer Rechtsherzhypertrophie assoziiert ist. Die funktionelle Ventrikeldynamik unterscheidet sich grundlegend zwischen linkem und rechtem Herzen. Die rechtsventrikuläre Funktion ist wesentlich durch Druckänderungen und nur in geringem Ausmaß durch Volumenänderungen beeinflusst. Die Therapie mit einem kontinuierlichen positiven Atemwegsdruck (CPAP) führt neben einer Suppression der Apnoephasen zu einer Senkung der Vor- und Nachlast, was—insbesondere beim dilatierten Herzen—zu günstigen myokardialen Effekten führt.

Abstract

Obstructive sleep apnea (OSA) is common with an incidence of at least 500,000 patients in the German population. Typical symptoms are daytime sleepiness, headache in the morning, and snoring. Presumably obstructive sleep apnea via various mechanisms increases cardiovascular morbidity. Hypoxemia causes nocturnal hypertension in most of the patients. Nevertheless, about 20% of the patients develop daytime pulmonary hypertension and right heart dysfunction. Clinical and animal studies demonstrated right ventricular hypertrophy as a consequence of intermittent hypoxemia and pulmonary hypertension. Right ventricular hemodynamics differ essentially from left ventricular hemodynamics. Right ventricular function is substantially influenced by right ventricular afterload, which is mainly determined by pulmonary vascular resistance, and slightly influenced by preload. Application of continuous positive airway pressure (CPAP) via a nose mask normalizes nocturnal breathing disorders and reduces pre- and afterload, especially in patients with cardiomegaly. Therefore, CPAP generates positive effects on the myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Alchanatis M, Tourkohoriti G, Kakouros S et al. (2001) Daytime pulmonary hypertension in patients with obstructive sleep apnea. The effect of continuous positive airway pressure on pulmonary hemodynamics. Respiration 68:566–572

    Article  CAS  PubMed  Google Scholar 

  2. Berman EJ, DiBenedetto RJ, Causey DE et al. (1991) Right ventricular hypertrophy detected by echocardiography in patients with newly diagnosed obstructive sleep apnea. Chest 100:347–350

    CAS  PubMed  Google Scholar 

  3. Blankfield RP, Hudgel DW, Tapolyai AA, Zyzanski SJ (2000) Bilateral leg edema, obesity, pulmonary hypertension, and obstructive sleep apnea. Arch Intern Med 160:2357–2362

    Google Scholar 

  4. Bonsignore MR, Marrone O, Insalaco G, Bonsignore G (1994) The cardiovascular effects of obstructive sleep apnoeas: analysis of pathogenic mechanisms. Eur Respir J 7:786–805

    Article  CAS  PubMed  Google Scholar 

  5. Bonsignore MR, Marrone O, Romano S, Pieri D (1994) Time course of right ventricular stroke volume and output in obstructive sleep apneas. Am J Respir Crit Care Med 149:155–159

    CAS  PubMed  Google Scholar 

  6. Bonsignore MR, Marrone O, Romano S (1992) Beat-by-beat analysis of pulmonary arterial pressure and flow during obstructive sleep apneas. Am Rev Respir Dis 145:721

    Google Scholar 

  7. Bradley TD, Rutherford R, Grossman RF et al. (1985) Role of daytime hypoxemia in the pathogenesis of right heart failure in the obstructive sleep apnea syndrome. Am Rev Respir Dis 131:835–839

    CAS  PubMed  Google Scholar 

  8. Buda AJ, Schroeder JS, Guilleminault C (1981) Abnormalities of pulmonary artery wedge pressures in sleep-induced apnea. Int J Cardiol 1:67–74

    Article  CAS  PubMed  Google Scholar 

  9. Budhiraja R, Tuder RM, Hassoun PM (2004) Endothelial dysfunction in pulmonary hypertension. Circulation 109:159–165

    Article  PubMed  Google Scholar 

  10. Chaouat A, Weitzenblum E, Krieger J et al. (1996) Pulmonary hemodynamics in the obstructive sleep apnea syndrome. Results in 220 consecutive patients. Chest 109:380–386

    CAS  PubMed  Google Scholar 

  11. Deutsche Gesellschaft für Pneumologie (1991) Empfehlungen zur Diagnostik und Therapie nächtlicher Atmungs- und Kreislaufsregulationsstörungen. Pneumologie 45:45–48

    PubMed  Google Scholar 

  12. Duchna H, Grote L, Sndreas S et al. (2003) Sleep disordered breathing and cardio- and cerebrovascular diseases: 2003 update of clinical significance and future perspectives. Somnologie 7:101–121

    Article  Google Scholar 

  13. Fagan KA (2001) Physiological and genomic consequences of intermittent hypoxia: selected contribution: pulmonary hypertension in mice following intermittent hypoxia. J Appl Physiol 90:2502–2507

    CAS  PubMed  Google Scholar 

  14. Guidry UC, Mendes LA, Evans JC et al. (2001) Echocardiographic features of the right heart in sleep-disordered breathing. The Framingham Heart Study. Am J Respir Crit Care Med 164:933–938

    CAS  PubMed  Google Scholar 

  15. Hanly P, Sasson Z, Zuberi N, Alderson M (1992) Ventricular function in snorers and patients with onstructive sleep apnea. Chest 102:100–105

    CAS  PubMed  Google Scholar 

  16. Krieger J, Sforza E, Apprill M et al. (1989) Pulmonary hypertension, hypoxemia, and hypercapnia in obstructive sleep apnea patients. Chest 96:729–737

    CAS  PubMed  Google Scholar 

  17. Laaban JP, Cassuto D, Orvoen-Frija E et al. (1998) Cardiorespiratory consequences of sleep apnoea syndrome in patients with massive obesity. Eur Respir J 11:20–27

    Article  CAS  PubMed  Google Scholar 

  18. Marrone O, Bellia V, Pieri D et al. (1992) Acute effects of oxygen administration on transmural pulmonary pressure in obstructive sleep apnea. Chest 101:1023–1027

    CAS  PubMed  Google Scholar 

  19. Noda A, Okada T, Yasuma F et al. (1995) Cardiac hypertrophy in obstructive sleep apnea syndrome. Chest 197:1538–1544

    Google Scholar 

  20. Nolte D (2002) Woran stirbt ein Schlaf-Apnoe-Patient? Atemw Lungenkrkh 28:111–112

    Google Scholar 

  21. Permutt S, Bromberger-Barnea B, Bane HN (1962) Alveolar pressure, pulmonary venous pressure and the vascular waterfall. Med Thoracalis 19:239–260

    CAS  Google Scholar 

  22. Sajkov D, Cowie RJ, Thornton AT et al. (1994) Pulmonary hypertension and hypoxemia in obstructive sleep apnea syndrome. Am J Respir Crit Care Med 149:416–422

    CAS  PubMed  Google Scholar 

  23. Sajkov D, Wang T, Saunders N et al. (2002) Continuous positive airway pressure treatment improves pulmonary hemodynamics in patients with obstructive sleep apnea. Am J Respir Crit Care Med 165:152–158

    PubMed  Google Scholar 

  24. Sanner B, Doberauer C, Konermann M et al. (1997) Pulmonary hypertension in patients with obstructive sleep apnea syndrome. Arch Intern Med 157:2483–2487

    Google Scholar 

  25. Sanner B, Konermann M, Müller HJ et al. (1995) Rechtsventrikuläre Funktion bei Patienten mit einer obstruktiven Schlafapnoe. Wien Med Wochenschr 145:518–520

    CAS  PubMed  Google Scholar 

  26. Schäfer H, Hasper E, Ewig S et al. (1998) Pulmonary haemodynamics in obstructive sleep apnoea: time course and associated factors. Eur Respir J 12:679–684

    Article  PubMed  Google Scholar 

  27. Schulz R, Mahmoudi S, Hattar K et al. (2000) Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea. Impact of continuous positive airway pressure therapy. Am J Respir Crit Care Med 162:570

    Google Scholar 

  28. Schulz R, Schmidt D, Blum A et al. (2000) Decreased plasma levels of nitric oxide derivates in obstructive sleep apnea: response to CPAP-Therapy. Thorax 55:1046–1051

    Article  CAS  PubMed  Google Scholar 

  29. Schulz R, Hummel C, Heinemann S et al. (2002) Serum levels of vascular endothelial growth factor are elevated in patients with obstructive sleep apnea and severe nighttime hypoxia. Am J Respir Crit Care Med 165:67–70

    PubMed  Google Scholar 

  30. Siedl M, Schulz V (1997) Pulmonale Hypertonie bei Patienten mit obstruktivem Schlafapnoe-Syndrom. Atemw Lungenkrankh 23:523–529

    Google Scholar 

  31. Steiner S, Hennersdorf M, Schwalen A, Strauer B (2001) Right ventrcular performance in patients with sleep apnea and cardiovascular disease. Am J Respir Crit Care Med 163:400A

    Google Scholar 

  32. Thalhofer S, Kaufmann U, Dorow P (1991) Veränderung der Hämodynamik mit und ohne CPAP-Beatmung bei Patienten mit Schlafapnoesyndrom. Pneumologie 45:293–295

    PubMed  Google Scholar 

  33. Tuder R, Groves B, Badesch D, Voelkel N (1992) Exuberantendothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol 144:275–285

    Google Scholar 

  34. Weitzenblum E, Krieger J, Apprill M et al. (1988) Daytime pulmonary hypertension in patients with sleep apnea syndrome. Am Rev Respir Dis 138:345–349

    CAS  PubMed  Google Scholar 

  35. Yokoe T, Minoguchi K, Matsuo H et al. (2003) Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation 107:1129–1134

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Steiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, S., Strauer, B.E. Funktionelle Dynamik des rechten Ventrikels und des Lungenkreislaufes bei obstruktiver Schlafapnoe. Internist 45, 1101–1107 (2004). https://doi.org/10.1007/s00108-004-1266-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-004-1266-8

Schlüsselwörter

Keywords

Navigation