Skip to main content
Log in

Study of rosin softening point through thermal treatment for a better understanding of maritime pine exudation

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The temperature of pine rosin softening point was studied to better understand the phenomenon of resin exudation on the surface of pine boards. This problem may decrease strongly the aesthetical performance of wood used outside and is an important concern for the industry. To perform a reliable measurement of rosin properties with a small amount of sample, differential scanning calorimetry (DSC) and thermo mechanical analysis (TMA) techniques were investigated and the results compared. DSC curves on industrial rosin and acetone rosin extractives from maritime pine show a behavior similar to a glass transition in polymers. TMA measurements carried out on the same industrial rosin showed that the softening point is in the midpoint of the transition phase observed by DSC. The softening point temperature is about 45 °C for industrial rosin and about 50 °C for rosin extractives from maritime pine boards. These values are significantly lower than those usually found on other rosins measured by the ASTM E28-14 standard using the ring-and-ball method. When using heat treatment, it was observed for the first time that the thermal history of the sample can change its softening point temperature. With these results, it could be possible to develop a new strategy to reduce rosin exudation for exterior wood siding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amiralian N, Annamalai PK, Fitzgerald C, Memmott P, Martin DJ (2014) Optimisation of resin extraction from an Australian arid grass ‘Triodia pungens’ and its preliminary evaluation as an anti-termite timber coating. Ind Crops Prod 59:241–247

    Article  CAS  Google Scholar 

  • Arrieta MP, Samper MD, Jiménez-López M, Aldas M, Lopez J (2017) Combined effect of linseed oil and gum rosin as natural additives for PVC. Ind Crops Prod 99:196–204

    Article  CAS  Google Scholar 

  • Artaki I, Ray U, Gordon HM, Gervasio MS (1992) Thermal degradation of rosin during high temperature solder reflow. Thermochim Acta 198:7–20

    Article  CAS  Google Scholar 

  • Azémard C, Vieillescazes C, Ménager M (2014) Effect of photodegradation on the identification of natural varnishes by FT-IR spectroscopy. Microchem J 112:137–149

    Article  CAS  Google Scholar 

  • Baldwin DE, Loeblich VM, Lawrence RV (1958) Acidic composition of oleoresins and rosins. Ind Eng Chem 3:342–346

    CAS  Google Scholar 

  • Barabde UV, Fulzele SV, Satturwar PM, Dorle AK, Joshi SB (2005) Film coating and biodegradation studies of new rosin derivative. React Funct Polym 62:241–248

    Article  CAS  Google Scholar 

  • Cannac M, Barboni T, Ferrat L et al (2009) Oleoresin flow and chemical composition of Corsican pine (Pinus nigra subsp. laricio) in response to prescribed burnings. For Ecol Manag 257:1247–1254

    Article  Google Scholar 

  • Chen G-F (1992) Developments in the field of rosin chemistry and its implications in coatings. Prog Org Coat 20:139–167

    Article  CAS  Google Scholar 

  • Coppen JJW, Hone GA (1995) Gum naval stores: turpentine and rosin from pine resin, 1st edn. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Echard J-P, Bertrand L, von Bohlen A et al (2010) The nature of the extraordinary finish of Stradivari’s instruments. Angew Chem Int Ed 49:197–201

    Article  CAS  Google Scholar 

  • Franceschi VR, Krokene P, Christiansen E, Krekling T (2005) Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol 167:353–376

    Article  PubMed  CAS  Google Scholar 

  • Fulzele SV, Satturwar PM, Dorle AK (2002) Polymerized rosin: novel film forming polymer for drug delivery. Int J Pharm 249:175–184

    Article  PubMed  CAS  Google Scholar 

  • Gaillard Y, Mija A, Burr A, Darque-Ceretti E, Felder E, Sbirrazzuoli N (2011) Green material composites from renewable resources: Polymorphic transitions and phase diagram of beeswax/rosin resin. Thermochim Acta 521:90–97

    Article  CAS  Google Scholar 

  • Ghanmi M, Satrani B, Aafi A, ismail MR, Farah A, Chaouch A (2009) Évaluation de la qualité de la colophane du pin maritime (Pinus pinaster) et du pin d’Alep (Pinus halepensis) du Maroc (evaluation of the quality of rosin from maritime pine (Pinus pinaster) and Aleppo pine (Pinus halepensis) from Morocco). Acta Bot Gallica 156:427–435

    Article  CAS  Google Scholar 

  • Hawley LF, Palmer RC (1912) Distillation of resinous wood by saturated steam. J Ind Eng Chem 4:789–798  

    Article  Google Scholar 

  • Hillis WE (1998) Deposits in heartshakes in wood. Wood Sci Technol 32:129–137

    Article  CAS  Google Scholar 

  • Hon DN-S, Shiraishi N (1990) Wood and cellulosic chemistry, 1st edn. Marcel Dekker Inc., New York

    Google Scholar 

  • Joye NM, Lawrence RV (1967) Resin acid composition of pine oleoresins. J Chem Eng Data 12:279–281

    Article  CAS  Google Scholar 

  • Lloyd JA (1972) Distributoin of extractives in Pinus radiata. N Z For Serv 8:288–294

    Google Scholar 

  • Maiti S, Ray SS, Kundu AK (1989) Rosin: a renewable resource for polymers and polymer chemicals. Prog Polym Sci 14:297–338

    Article  CAS  Google Scholar 

  • Muñoz GR, Estévez ÓS, González JGÁ, Sánchez EM (2014) Influence of provenance, silvicultural regime and tree shape on the quality of maritime pine (Pinus pinaster) timber. Eur J For Res 133:623–630

    Article  Google Scholar 

  • Narayanan M, Loganathan S, Valapa RB, Thomas S, Varghese TO (2017) UV protective poly(lactic acid)/rosin films for sustainable packaging. Int J Biol Macromol 99:37–45

    Article  PubMed  CAS  Google Scholar 

  • Penaranda Moren MS, Korjenic A (2017) Hotter and colder—how do photovoltaics and greening impact exterior facade temperatures: the synergies of a multifunctional system. Energy Build 147:123–141

    Article  Google Scholar 

  • Pinto I, Knapic S, Pereira H, Usenius A (2006) Simulated and realised industrial yields in sawing of maritime pine (Pinus pinaster Ait.). Holz Roh- Werkst 64:30–36

    Article  Google Scholar 

  • Pio CA, Valente AA (1998) Atmospheric fluxes and concentrations of monoterpenes in resin-tapped pine forests. Atmos Environ 32:683–691

    Article  CAS  Google Scholar 

  • Ren F, Zheng Y-F, Liu X-M et al (2015) An investigation of the oxidation mechanism of abietic acid using two-dimensional infrared correlation spectroscopy. J Mol Struct 1084:236–243

    Article  CAS  Google Scholar 

  • Rissanen K, Hölttä T, Vanhatalo A, Aalto J, Nikinmaa E, Rita H, Bäck J (2016) Diurnal patterns in Scots pine stem oleoresin pressure in a boreal forest. Plant Cell Environ 39:527–538

    Article  PubMed  CAS  Google Scholar 

  • Sahu NH, Mandaogade PM, Deshmukh AM et al (1999) Biodegradation studies of rosin-glycerol ester derivative. J Bioact Compat Polym 14:344–359

    Article  CAS  Google Scholar 

  • Satturwar PM, Mandaogade PM, Darwhekar GN et al (2003) Biodegradation studies of rosin-based polymers. Drug Dev Ind Pharm 29:669–677

    Article  PubMed  CAS  Google Scholar 

  • Scalarone D, Lazzari M, Chiantore O (2002) Ageing behaviour and pyrolytic characterisation of diterpenic resins used as art materials: colophony and Venice turpentine. J Anal Appl Pyrolysis 64:345–361

    Article  CAS  Google Scholar 

  • Silvestre AJD, Gandini A (2008) Chap. 4—rosin: major sources, properties and applications. In: Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp 67–88

    Chapter  Google Scholar 

  • Tirat S, Degano I, Echard J-P et al (2016) Historical linseed oil/colophony varnishes formulations: study of their molecular composition with micro-chemical chromatographic techniques. Microchem J 126:200–213

    Article  CAS  Google Scholar 

  • Wiyono B, Tachibana S, Tinambunal D (2006) Chemical compositions of pine resin, rosin and turpentine oil from west JAVA. J For Res 3:7–17

    Google Scholar 

  • Wu H, Hu Z (1997) Comparative anatomy of resin ducts of the Pinaceae. Trees 11:135–143

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Nouvelle Aquitaine (France) and Landes (40, France) general councils. This work was also funded by ANR-10-EQPX-16 XYLOFOREST (Mont de Marsan, France).We also gratefully acknowledge our partners: Bardage Bois Neoclin, FCBA, FPbois, Gascogne Bois, Lesbats Scieries d’Aquitaine, Scierie Labadie, Anne-Marie Pollaud-Duliand, Jamal El Hachem, Manon Frances, Claude Cabaret and Léo Leroyer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Cabaret.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabaret, T., Boulicaud, B., Chatet, E. et al. Study of rosin softening point through thermal treatment for a better understanding of maritime pine exudation. Eur. J. Wood Prod. 76, 1453–1459 (2018). https://doi.org/10.1007/s00107-018-1339-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-018-1339-3

Navigation