Skip to main content
Log in

Small resistive wood moisture sensors: a method for moisture content determination in wood structures

Kleine widerstandsbasierte Sensoren zur Bestimmung der Holzfeuchte in Holzkonstruktionen

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The wood moisture content influences the service life of wood structures since wood is susceptible to decay by rot fungi if it is exposed to high moisture contents during long periods of time. In rain exposed structures, the moisture content close to end grain surfaces and joints can be significantly higher than the average moisture content, but moisture content determinations at such locations require small moisture content sensors. This paper presents small resistive moisture content sensors fastened by electrically conductive adhesive. The relationship between moisture content and electrical resistance was determined for Norway spruce (Picea abies (L.) Karst.) for a wide range of moisture conditions achieved both by equilibrating specimens over saturated salt solutions and by the pressure plate method. The error, i.e. the difference between the gravimetric moisture content and the moisture content from the regression equation, increased with increasing moisture content. Neither the wood type (heartwood/sapwood) nor the growth rate (southern or northern Sweden) influenced the resistance-moisture content relationship.

Zusammenfassung

Die Holzfeuchte hat einen Einfluss auf die Nutzungsdauer von Holzkonstruktionen, da Holz anfällig für Pilzbefall ist, wenn es über einen längeren Zeitraum hoher Feuchte ausgesetzt ist. Bei Konstruktionen, die Regen ausgesetzt sind, kann der Feuchtegehalt im Hirnholzbereich und im Bereich von Verbindungen deutlich höher als der mittlere Feuchtegehalt sein. Zur Bestimmung des Feuchtegehalts an diesen Stellen sind kleine Feuchtesensoren erforderlich. In diesem Artikel werden kleine widerstandsbasierte Feuchtesensoren vorgestellt, die mit elektrisch leitfähigem Klebstoff befestigt werden. Der Zusammenhang zwischen Feuchtegehalt und elektrischem Widerstand wurde am Fichtenholz (Picea abies (L.) Karst.) in einem weiten Feuchtebereich bestimmt, wobei die Feuchten sowohl durch Lagerung über gesättigten Salzlösungen als auch mittels der Drucktopfmethode eingestellt wurden. Der Fehler, d.h. die Differenz zwischen dem gravimetrischem und dem über die Regressionsgleichung ermittelten Feuchtegehalt nahm mit steigendem Feuchtegehalt zu. Weder die Art des Holzes (Kernholz/Splintholz) noch die Wuchsbedingungen (Süd- oder Nordschweden) hatten einen Einfluss auf die Beziehung zwischen Widerstand und Holzfeuchte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6
Fig. 7 Abb. 7
Fig. 8 Abb. 8
Fig. 9 Abb. 9
Fig. 10 Abb. 10

Similar content being viewed by others

References

  • Brischke C, Rapp AO, Bayerbach R (2008) Measurement system for long-term recording of wood moisture content with internal conductively glued electrodes. Build Environ 43(10):1566–1574

    Article  Google Scholar 

  • Brown JH, Davidson RW, Skaar C (1963) Mechanism of electrical conduction in wood. Forest Prod J 13(10):455–459

    Google Scholar 

  • Christensen GN, Kelsey KE (1959) Die Geschwindigkeit der Wasserdampfsorption durch Holz (The rate of sorption of water vapor by wood). Holz Roh- Werkst 17(5):178–188

    Article  CAS  Google Scholar 

  • Cloutier A, Fortin Y (1991) Moisture-content–water potential relationship of wood from saturated to dry conditions. Wood Sci Technol 25(4):263–280

    Article  CAS  Google Scholar 

  • Dai G, Ahmet K (2001) Long-term monitoring of timber moisture content below the fiber saturation point using wood resistance sensors. Forest Prod J 51(5):52–58

    Google Scholar 

  • Davidson RW (1958) The effect of temperature on the electrical resistance of wood. Forest Prod J 8(5):160–164

    Google Scholar 

  • De Groot RC, Highley TL (1995) Forest Products Laboratory methodology for monitoring decay in wood exposed above ground. In: Proceedings of IRG Annual Meeting, 1995. IRG/WP 95-20074

  • Derbyshire H, Miller ER (1997a) Moisture conditions in coated exterior wood Part 2: the relation between coating permeability and timber moisture content. J Inst Wood Sci 14(4):162–168

    Google Scholar 

  • Derbyshire H, Miller ER (1997b) Moisture conditions in coated exterior wood Part 3: moisture content during natural weathering. J Inst Wood Sci 14(4):169–174

    Google Scholar 

  • Du QP, Geissen A, Noack D (1991) Widerstandskennlinien einiger Handelshölzer und ihre Meßbarkeit bei der elektrischen Holzfeuchtemessung. Holz Roh- Werkst 49(7–8):305–311

    Article  Google Scholar 

  • Forsén H, Tarvainen V (2000) Accuracy and functionality of hand held wood moisture content meters. VTT Publications 420, VTT Building Technology, Espoo

  • Gaby L, Duff J (1978) Moisture content changes in wood deck and rail components. Forest service research paper SE-190, US Department of Agriculture, Southeastern Forest Experiment Station, Asheville, North Carolina

  • Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bureau Stand-Phys Chem 81A(1):89–96

    Article  Google Scholar 

  • Håkansson H (1998) Retarded sorption in wood. Doctoral thesis, TABK–98/1012, Lund University, Lund

  • Hjort S (1996) Full-scale method for testing moisture conditions in painted wood panelling. J Coat Technol 68(856):31–39

    CAS  Google Scholar 

  • Hjort S (1997) Moisture balance in painted wood panelling. Doctoral thesis, P-97:5, Chalmers University of Technology, Göteborg

  • James WL (1988) Electric moisture meters for wood. FPL-GTR-6, United States Department of Agriculture, Forest Service, Forest Products Laboratory Madison

  • Johansson P (2005) Water absorption in two-layer masonry systems: properties, profiles and predictions. Doctoral thesis, TVBM-1024, Lund University, Lund

  • Keylwerth R, Noack D (1956) Über den Einfluß höherer Temperaturen auf die elektrische Holzfeuchtigkeitsmessung nach dem Widerstandsprinzip. Holz Roh- Werkst 14(5):162–172

    Article  Google Scholar 

  • Kumaran MK, Lackey JC, Normandin N, Tariku F, van Reenen D (2002) A thermal and moisture transport property database for common building and insulating materials. Final report from ASHRAE research project 1018-RP, Institute for Research in Construction, National Research Council, Ottawa

  • Kuroda N, Tsutsumi J (1982) Anisotropic behaviour of electrical conduction in wood. Kyuschu Univ For Rep 28:25–30

    Google Scholar 

  • Lin RT (1965) A study on the electrical conduction in wood. Forest Prod J 15(11):506–514

    Google Scholar 

  • Norberg P (1999) Monitoring wood moisture content using the WETCORR method. Part 1: background and theoretical considerations. Holz Roh- Werkst 57(6):448–453

    Article  Google Scholar 

  • Samuelsson A (1992) Calibration curves for resistance-type moisture meters. Paper presented at the 3rd IUFRO International Wood Drying Conference, Vienna, 18–21 August 1992

  • Siau JF (1984) Transport processes in wood. Springer, Berlin

    Book  Google Scholar 

  • Skaar C (1964) Some factors involved in the electrical determination of moisture gradients in wood. Forest Prod J 14(6):239–243

    Google Scholar 

  • Skaar C (1988) Wood-water relations. Springer, Berlin

    Book  Google Scholar 

  • Stamm AJ (1927) The electrical resistance of wood as a measure of its moisture content. Ind Eng Chem 19(9):1021–1025

    Article  CAS  Google Scholar 

  • Stamm AJ (1929) The fiber-saturation point of wood as obtained from electrical conductivity measurements. Ind Eng Chem Anal Ed 1(2):94–97

    Article  CAS  Google Scholar 

  • Takechi O, Inose O (1953) Analysis on the fundamental properties of electric resistance of wood II—on the electric resistance of wood in relation to the moisture content and the temperature. Sci Rep Matsuyama Agric College 10(March):13–35

    Google Scholar 

  • Thygesen LG, Engelund ET, Hoffmeyer P (2010) Water sorption in wood and modified wood at high values of relative humidity. Part I: results for untreated, acetylated, and furfurylated Norway spruce. Holzforschung 64(3):315–323

    Article  CAS  Google Scholar 

  • Venkateswaran A (1972) A note on densities and conductivities of wood. Wood Science 5:60–62

    Google Scholar 

  • Venkateswaran A (1973) Effect of compression on electrical properties of wood and cellulose. Wood Science 5(3):230–234

    Google Scholar 

  • Venkateswaran A (1974) The interdependence of the lignin content and electrical properties of wood. Wood Fiber 6(1):46–52

    Google Scholar 

  • Vermaas HF (1975) A summary of literature references of factors affecting moisture content determination with DC resistance measurements. S Afr For J 95:35–36

    Google Scholar 

  • Vermaas HF (1983) A note on the possible influence of electrode-pressure on the relationship between DC resistivity and lignin content of wood. J Inst Wood Sci 9(6):268–269

    Google Scholar 

  • Vermaas HF (1984) The influence of sample density on the DC resistance of wood. Holzforschung 38(2):109–112

    Article  Google Scholar 

  • Wadsö L (1993) Measurements of water vapour sorption in wood. Part 2. Results. Wood Sci Technol 28(1):59–65

    Article  Google Scholar 

  • Wadsö L (1994a) Describing non-Fickian water-vapor sorption in wood. J Mater Sci 29(9):2367–2372

    Article  Google Scholar 

  • Wadsö L (1994b) Unsteady-state water vapour adsorption in wood: an experimental study. Wood Fiber Sci 26(1):36–50

    Google Scholar 

  • Wadsö L, Svennberg K, Dueck A (2004) An experimentally simple method for measuring sorption isotherms. Drying Technol 22(10):2427–2440

    Article  Google Scholar 

Download references

Acknowledgments

Thomas Ulvcrona, Swedish University of Agricultural Sciences, is gratefully acknowledged for providing the wood material used in this study. Thord Lundgren, Division of Structural Mechanics, Lund University is gratefully acknowledged for building the logger. This work is part of WoodBuild, a research programme within the Sectoral R&D Programme 2006–2012 for the Swedish forest-based industry. This Programme is jointly funded by the government, industry and other stakeholders with interests related to the Swedish forest-based industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fredriksson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fredriksson, M., Wadsö, L. & Johansson, P. Small resistive wood moisture sensors: a method for moisture content determination in wood structures. Eur. J. Wood Prod. 71, 515–524 (2013). https://doi.org/10.1007/s00107-013-0709-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-013-0709-0

Keywords

Navigation