Skip to main content
Log in

Variation of certain chemical properties within the stemwood of black locust (Robinia pseudoacacia L.)

Variation verschiedener chemischer Eigenschaften im Stammholz von Robinie (Robinia pseudoacacia L.)

  • ORIGINALARBEITEN ORIGINALS
  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript

Abstract

From the bottom, middle, and top of three mature 35 to 37-year old black locust tree discs were cut and analysed to determine the variation within the stem of certain chemical properties. Hot-water extractive content was greater in heartwood than in sapwood, while the reverse occurred for the dichloromethane extractive content. Vertical stem analysis of hot-water extractives showed that they increased in heartwood but decreasedin sapwood from the bottom to the top of the stems while the reversal occurred for dichloromethane extractive content of sapwood. At the bottom and the middle of the stems, ash content was greater in sapwood than in heartwood, but at the top no difference was found between heartwood and sapwood. Ash content of both heartwood and sapwood was found to increase in the axial direction with respective values of 0.36% (bottom) and 0.76% (top) for heartwood and of 0.65% (bottom) and 0.76% (top) for sapwood. Ash analysis showed that considerable variations were found for the inorganic elements K and P being greater in sapwood than in heartwood. Heartwood was more acid than sapwood except for the top of the stems. Acidity mean values were found to increase from the bottom to the top of the stems in heartwood while they slightly decreased in sapwood. Total buffering capacity of heartwood was greater than that of sapwood and total buffering capacity of sapwood exhibited an inverse relationship to height. Very small acid equivalent values were determined only in sapwood. At the bottom, lignin content in heartwood (25.73%) was greater than in sapwood (18.13%). Lignin content of heartwood decreased from 25.73% at the bottom to 18.33% at the top, while that of sapwood was 18.13% at the bottom, 21.42% at the middle and 19.64% at the top.

Zusammenfassung

Vom unteren, mittleren und oberen Teil der Stämme von drei ausgewachsenen 35–37 Jahre alten Robinien wurden Stammscheiben herausgeschnitten und analysiert, um die Variation bestimmter chemischer Eigenschaften innerhalb des Stammes zu bestimmen. Insgesamt war der Heisswasser-Extraktstoffgehalt im Kernholz höher als im Splintholz, während für den Di-Chlormethan-Extraktstoffgehalt das Gegenteil der Fall war. Die senkrechte Stammanalyse der Heisswasser-Extraktstoffe ergab, dass der Extraktstoffgehalt im Kernholz vom unteren Stammende zum Zopf hin zunahm, aber im Splintholz abnahm, während der Di-Chlormethan-Extraktstoffgehalt im Splintholz zum Zopf hin zunahm. Die unteren und mittleren Stammteile wiesen im Splintholz einen höheren Aschegehalt auf als im Kernholz. Im oberen Teil unterschied sich der Aschegehalt zwischen Kern- und Splintholz nicht. Der Aschegehalt stieg sowohl im Kern- als auch im Splintholz in Stammlängsrichtung an, im Kernholz von 0.36% (unten) auf 0.76% (oben) und im Splintholz von 0.65% (unten) auf 0.76% (oben). Die Aschenanalyse ergab beträchtliche Schwankungen bei den anorganischen Elementen K und P. Im Splintholz waren diese höher als im Kernholz. Das Kernholz lag mit Ausnahme des oberen Stammbereichs mehr im sauren Bereich als Splintholz. Die durchschnittlichen Säurewerte nahmen im Kernholz in Stammlängsrichtung von unten nach oben zu und im Splintholz leicht ab. Die Gesamtpufferkapazität im Kernholz war grösser als im Splintholz, wo sie mit zunehmender Stammhöhe abnahm. Der Ligningehalt war im unteren Stammbereich im Kernholz höher (25.73%) als im Splintholz (18.13%). Im Kernholz verringerte sich der Ligningehalt von 25.73% im unteren Stammbereich auf 18.33% im Zopfbereich, während der Ligningehalt im Splintholz im unteren Teil bei 18.13% lag, in der Mitte bei 21.42% und im Zopfbereich bei 19.64%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn WY (1985) Strength properties and chemical composition of black locust, Robinia pseudoacacia. Wood Sci Technol (Mogjae-Conghak), Korea Republic, 13(6):3–8

    Google Scholar 

  2. Arabatzis G (2003) The personal and social characteristics of investors–black locust (Robinia pseudoacacia L.) cultivators and the factors that affect the size of black locust plantations according to the EEC regulation 2080/92. Geotech Sci Issues 1:5–14 (in Greek)

    Google Scholar 

  3. ASTM standard (1984) D 1102, standard test method for ash in wood. American Society for Testing and Materials, Philadelphia, Pennsylvania

  4. ASTM standard (1984) D 1108, standard test method for dichloromethane solubles in wood. American Society for Testing and Materials, Philadelphia, Pennsylvania

  5. ASTM standard (1984) D 1110, standard test methods for water solubility of wood. American Society for Testing and Materials, Philadelphia, Pennsylvania

  6. Barrett RP, Mebrahtu T, Hanover JW (1990) Black locust: A multi-purpose tree species for temperate climates. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, OR, pp 278–283

    Google Scholar 

  7. Chen T-Y, Paulitsch M (1974) Inhaltsstoffe von Nadeln, Rinde und Holz der Fichte und Kiefer und ihr Einfluss auf die Eigenschaften daraus hergesteller Spanplatten. Holz Roh Werkst 32:397–401

    Google Scholar 

  8. Chow P, Rolfe GL, Shupe TF (1996) Some chemical constituents of ten-year-old american sycamore and black locust grown in Illinois. Wood Fiber Sci 28(2):186–193

    CAS  Google Scholar 

  9. Fengel D, Wegener G (1984) Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin New York, p 57

    Google Scholar 

  10. Geyer WA, Walawender WP (1994) Biomass properties and gasification behavior of young black locust. Wood Fiber Sci 26(3):354–359

    CAS  Google Scholar 

  11. Hanover JW (1992) Black locust: An historical and future perspective. In: Proc. International Conf. on Black Locust: Biology, Culture and Cultivation, June 17–21, 1991, Michigan State Univ., East Lansing, MI, pp 277

  12. Hart JH (1968) Morphological and chemical differences between sapwood, discolored sapwood, and heartwood in black locust and osage orange. Forest Sci 14(3):334–338

    CAS  Google Scholar 

  13. Johns WE, Niazi K (1980) Effect of pH and buffering capacity of wood on the gelation time of ureaformaldehyde resin. Wood Fiber Sci 12:255–263

    CAS  Google Scholar 

  14. Keresztesi B (1981) The black locust. Unasylva 32:23–33

    Google Scholar 

  15. Keresztesi B (1988) The Black Locust. Forestry Monograph-Series of the Agricultural Science Department of the Hungarian Academy of Sciences, Budapest, Hungary, pp 197

  16. Koloc K (1953) Werkstoff. Kartei Holz Grundmappe

  17. Kopitovic S, Klasnja B, Guzina V (1989) Importance of structural, physical and chemical properties of Robinia wood (Robinia pseudoacacia L.) for its mechanical characteristics. Drevarsky Vyskum 122:13–30

    CAS  Google Scholar 

  18. Lee CS (1983) The chemical and physical properties of two-year short-rotation deciduous trees. For Prod J 6(11):322–323

    Google Scholar 

  19. Maloney TM (1977) Modern Particleboard and Dry-Process Fiberboard Manufacturing. Miller-Freeman, San Francisco

    Google Scholar 

  20. Molnar S (1995) Wood properties and utilization of Black Locust in Hungary. Drevarsky Vyskum 1:27–33

    Google Scholar 

  21. Myers GC (1978) How adjusting fiber acidity improved strength of dry-formed hardboards. For Prod J 28(3):48–50

    CAS  Google Scholar 

  22. Nelson ND (1973) Effects of wood and pulp properties on medium-density, dry-formed hardboard. For Prod J 23(9):72–80

    Google Scholar 

  23. Pappas C, Tarantilis A, Polissiou M (1998) Determination of Kenaf (Hibiscus cannabinus L.) lignin in crude plant material using Diffuse Reflectance Infrared Fourier Transform Spectroscopy. Appl Spectrosc 52:1399–1403

    Article  CAS  Google Scholar 

  24. Redei K (1999) Black locust (Robinia pseudoacacia L.) energy plantations in Hungary. Silva Gandavensis 64:37–43

    Google Scholar 

  25. Rendle BJ (ed) (1972) World Timbers. Vol. 1. Europe and Africa. E. Benn Ltd., London

    Google Scholar 

  26. Sandermann W, Rothkamm M (1959) The determination of pH values of woods and their practical importance. Holz Roh Werkst 17:433–440

    Article  CAS  Google Scholar 

  27. Slay JR, Short PH, Wright DC (1980) Catalytic effects of extractives from pressure-refined fiber on the gel time of urea-formaldehyde resin. For Prod J 30(3):22–23

    CAS  Google Scholar 

  28. So WT, Park SJ, Kim JK, Shim K, Lee KY, Hyun JW, Lee HS, Kang SK, Jo JM (1980) On wood properties of imported (introduced) species grown in Korea. Wood properties of Pinus stobus, Pinus silvestris, Pinus banksiana, Picea abies and Robinia pseudoacacia. Res Rep For Res Inst S Korea 27:7–31

    Google Scholar 

  29. Stringer JW (1981) Factors affecting the variation in heat content of black locust biomass. Ms. thesis, University of Kentucky, pp 156

  30. Stringer JW (1992) Wood properties of black locust (Robinia pseudoacacia L.): physical, mechanical, and quantitative chemical variability. In: Proc. International Conf. on Black Locust: Biology, Culture and Cultivation. June 17–21 1991, Michigan State Univ., East Lansing, MI, pp 277

  31. Stringer JW, Carpenter SB (1986) Energy yield of black locust biomass fuel. Forest Sci 32(4):1049–1057

    Google Scholar 

  32. Stringer JW, Olson JR (1987) Radial and vertical variations in stem properties of juvenile black locust (Robinia pseudoacacia L.). Wood Fiber Sci 19(1):59–67

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Adamopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamopoulos, S., Voulgaridis, E. & Passialis, C. Variation of certain chemical properties within the stemwood of black locust (Robinia pseudoacacia L.). Holz Roh Werkst 63, 327–333 (2005). https://doi.org/10.1007/s00107-005-0018-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-005-0018-3

Keywords

Navigation