Skip to main content
Log in

Intraoperatives Monitoring des N. cochlearis bei Eingriffen im Kleinhirnbrückenwinkel

Intraoperative monitoring of cochlear nerve function during cerebello-pontine angle surgery

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Bei Eingriffen im Kleinhirnbrückenwinkel (KHBW), z. B. zur operativen Therapie eines Vestibularisschwannoms, besteht das Risko der Schädigung des N. cochlearis. Als Folge können Hörminderungen bis zur Taubheit auftreten, mit wesentlicher Beeinträchtigung der Lebensqualität. Methoden zur intraoperativen Funktionsüberwachung können Risiken minimieren.

Fragestellung

Ziel war ein Überblick über aktuelle Methoden zur intraoperativen Überwachung des N. cochlearis sowie die Zusammenfassung neuerer Entwicklungen.

Material und Methoden

Es erfolgte die Auswertung und Zusammenfassung der Literatur und die Diskussion neuer Methoden.

Ergebnisse

Die frühen akustisch evozierten Potenziale (FAEP) mittels Klickreizen stellen nach wie vor die Standardmethode zur intraoperativen Funktionsüberwachung des N. cochlearis dar. Amplituden- und Latenzveränderungen der FAEP weisen auf das Risiko einer postoperativen Hörminderung hin, erlauben jedoch nur eingeschränkt eine weitere Differenzierung der postoperativen Hörqualität. Als neuere Methoden könnten Nahfeldableitungen eine schnellere Rückmeldung, Auditory Steady State Responses eine frequenzspezifische Testung ermöglichen.

Schlussfolgerungen

Die intraoperative Funktionsüberwachung des N. cochlearis ist ein integraler Bestandteil der KHBW-Chirurgie. Sie ermöglicht die Erkennung potenzieller Nervenschädigungen und trägt so zur Vermeidung postoperativer funktioneller Defizite bei. Die Entwicklung und Implementierung neuer und zusätzlicher Verfahren könnten den klinischen Nutzen weiter verbessern.

Abstract

Background

Surgical procedures in the cerebello-pontine angle (CPA), e. g. for vestibular schwannoma, have an increased risk for damage to the cochlear nerve. Consequently, hearing deterioration up to complete deafness may result with severe impact on quality of life. Methods for intraoperative monitoring of function may minimize such risks.

Objective

Review of current methods for intraoperative monitoring of the cochelar nerve and summary of new developments.

Materials and methods

Analysis and summary of literature, discussion of new methods.

Results

Early auditory evoked potentials using click stimuli remain the standard method for intraoperative monitoring of cochlear nerve function. Amplitude and latency changes indicate a risk of postoperative hearing deterioration; however demonstrate only limited further differentiation of hearing quality. As novel methods, near-field recordings may allow faster feedback and auditory steady state responses potentially enable frequency specific testing.

Conclusions

Intraoperative monitoring of the cochlear nerve is an integral component of CPA surgery. It enables detection of potential nerve damage and thus contributes to avoiding postoperative functional deficits. Development and implementation of novel and additional approaches may further improve its clinical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Abboud T, Regelsberger J, Matschke J et al (2016) Long-term vestibulocochlear functional outcome following retro-sigmoid approach to resection of vestibular schwannoma. Eur Arch Otorhinolaryngol 273:719–725

    Article  PubMed  Google Scholar 

  2. Aihara N, Murakami S, Watanabe N et al (2009) Cochlear nerve action potential monitoring with the microdissector in vestibular schwannoma surgery. Skull Base 19:325–332

    Article  PubMed  PubMed Central  Google Scholar 

  3. American Clinical Neurophysiology Society (2009) Guideline 11 C: recommended standards for Intraoperative monitoring of auditory evoked potentials. https://www.acns.org/pdf/guidelines/Guideline-11C.pdf. Zugegriffen: 11.5.2016

    Google Scholar 

  4. Canale A, Dagna F, Lacilla M et al (2012) Relationship between pure tone audiometry and tone burst auditory brainstem response at low frequencies gated with Blackman window. Eur Arch Otorhinolaryngol 269:781–785

    Article  PubMed  Google Scholar 

  5. Colletti V, Fiorino FG, Mocella S, Policante Z (1998) ECochG, CNAP and ABR monitoring during vestibular Schwannoma surgery. Audiology 37:27–37

    Article  CAS  PubMed  Google Scholar 

  6. Gorga MP, Worthington DW, Reiland JK et al (1985) Some comparisons between auditory brain stem response thresholds, latencies, and the pure-tone audiogram. Ear Hear 6:105–112

    Article  CAS  PubMed  Google Scholar 

  7. Grundy BL, Jannetta PJ, Procopio PT et al (1982) Intraoperative monitoring of brain-stem auditory evoked potentials. J Neurosurg 57:674–681

    Article  CAS  PubMed  Google Scholar 

  8. Hatayama T, Møller AR (1998) Correlation between latency and amplitude of peak V in the brainstem auditory evoked potentials: intraoperative recordings in microvascular decompression operations. Acta Neurochir (Wien) 140:681–687

    Article  CAS  Google Scholar 

  9. Herdman AT, Stapells DK (2003) Auditory steady-state response thresholds of adults with sensorineural hearing impairments. Int J Audiol 42:237–248

    Article  PubMed  Google Scholar 

  10. Inoue Y, Ogawa K, Kanzaki J (2001) Quality of life of vestibular schwannoma patients after surgery. Acta Otolaryngol 121:59–61

    Article  CAS  PubMed  Google Scholar 

  11. James ML, Husain AM (2005) Brainstem auditory evoked potential monitoring: when is change in wave V significant? Neurology 65:1551–1555

    Article  PubMed  Google Scholar 

  12. Krieg SM, Kempf L, Droese D et al (2014) Superiority of tympanic ball electrodes over mastoid needle electrodes for intraoperative monitoring of hearing function. J Neurosurg 120:1042–1047

    Article  PubMed  Google Scholar 

  13. Lachowska M, Bohórquez J, Ozdamar O (2012) Simultaneous acquisition of 80 Hz ASSRs and ABRs from quasi ASSRs for threshold estimation. Ear Hear 33:660–671

    PubMed  Google Scholar 

  14. Matthies C, Samii M (1997) Direct brainstem recording of auditory evoked potentials during vestibular schwannoma resection: nuclear BAEP recording. J Neurosurg 86:1057–1062

    Article  CAS  PubMed  Google Scholar 

  15. Møller AR (1996) Monitoring auditory function during operations to remove acoustic tumors. Am J Otol 17:452–460

    PubMed  Google Scholar 

  16. Møller AR, Jho HD, Jannetta PJ (1994) Preservation of hearing in operations on acoustic tumors: an alternative to recording brain stem auditory evoked potentials. Neurosurgery 34:688–692 (discussion 692–3)

    Article  PubMed  Google Scholar 

  17. Mühler R, Hoth S (2014) Objective diagnostic methods in pediatric audiology. HNO 62:702–717

    Article  PubMed  Google Scholar 

  18. Mühler R, Rahne T, Mentzel K, Verhey JL (2014) 40-Hz multiple auditory steady-state responses to narrow-band chirps in sedated and anaesthetized infants. Int J Pediatr Otorhinolaryngol 78:762–768

    Article  PubMed  Google Scholar 

  19. Nakatomi H, Miyazaki H, Tanaka M et al (2015) Improved preservation of function during acoustic neuroma surgery. J Neurosurg 122:24–33

    Article  PubMed  Google Scholar 

  20. Nakatomi H, Miyazaki H, Tanaka M et al (2015) Improved preservation of function during acoustic neuroma surgery. J Neurosurg 122:24–33

    Article  PubMed  Google Scholar 

  21. Neu M, Strauss C, Romstöck J et al (1999) The prognostic value of intraoperative BAEP patterns in acoustic neurinoma surgery. Clin Neurophysiol 110:1935–1941

    Article  CAS  PubMed  Google Scholar 

  22. Oh T, Nagasawa DT, Fong BM et al (2012) Intraoperative neuromonitoring techniques in the surgical management of acoustic neuromas. Neurosurg Focus 33:E6

    Article  PubMed  Google Scholar 

  23. Picton TW, John MS, Dimitrijevic A, Purcell D (2003) Human auditory steady-state responses. Int J Audiol 42:177–219

    Article  PubMed  Google Scholar 

  24. Polo G, Fischer C, Sindou MP, Marneffe V (2004) Brainstem auditory evoked potential monitoring during microvascular decompression for hemifacial spasm: intraoperative brainstem auditory evoked potential changes and warning values to prevent hearing loss – prospective study in a consecutive series of 84. Neurosurgery 54:97–104 (discussion 104–6)

    Article  PubMed  Google Scholar 

  25. Rahne T, Verhey JL, Mühler R (2013) Sorted averaging improves quality of auditory steady-state responses. J Neurosci Methods 216:28–32

    Article  PubMed  Google Scholar 

  26. Rampp S, Rensch L, Simmermacher S et al (2014) Viability of intraoperative auditory steady state responses during intracranial surgery. J Clin Neurophysiol 31:344–351

    Article  PubMed  Google Scholar 

  27. Rampp S, Rensch L, Simmermacher S et al (2016) Intraoperative auditory steady state monitoring during surgery in the cerebello-pontine angle for estimation of postoperative hearing classes. J Neurosurg (in press)

  28. Rance G, Dowell RC, Rickards FW et al (1998) Steady-state evoked potential and behavioral hearing thresholds in a group of children with absent click-evoked auditory brain stem response. Ear Hear 19:48–61

    Article  CAS  PubMed  Google Scholar 

  29. Samii M, Matthies C (1997) Management of 1000 vestibular schwannomas (acoustic neuromas): hearing function in 1000 tumor resections. Neurosurgery 40:248–260 (discussion 260–2)

    Article  CAS  PubMed  Google Scholar 

  30. Scheich M, Ginzkey C, Reuter E et al (2013) Quality of life after microsurgery for vestibular schwannoma via the middle cranial fossa approach. Eur Arch Otorhinolaryngol. doi:10.1007/s00405-013-2671-1

    Google Scholar 

  31. Scheller C, Wienke A, Tatagiba M et al (2016) Prophylactic nimodipine treatment for cochlear and facial nerve preservation after vestibular schwannoma surgery: a randomized multicenter Phase III trial. J Neurosurg. doi:10.3171/2015.1.JNS142001

    Google Scholar 

  32. Schlake HP, Milewski C, Goldbrunner RH et al (2001) Combined intra-operative monitoring of hearing by means of auditory brainstem responses (ABR) and transtympanic electrocochleography (ECochG) during surgery of intra- and extrameatal acoustic neurinomas. Acta Neurochir (Wien) 143:985–995

    Article  CAS  Google Scholar 

  33. Strauss C (1993) Delayed hearing loss after acoustic neurinoma removal. J Neurosurg 79:155–156

    Article  CAS  PubMed  Google Scholar 

  34. Vander Werff KR, Prieve BA, Georgantas LM (2009) Infant air and bone conduction tone burst auditory brain stem responses for classification of hearing loss and the relationship to behavioral thresholds. Ear Hear 30:350–368

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rampp.

Ethics declarations

Interessenkonflikt

S. Rampp, T. Rahne, S.K. Plontke, C. Strauss und J. Prell geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rampp, S., Rahne, T., Plontke, S.K. et al. Intraoperatives Monitoring des N. cochlearis bei Eingriffen im Kleinhirnbrückenwinkel. HNO 65, 413–418 (2017). https://doi.org/10.1007/s00106-016-0262-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-016-0262-3

Schlüsselwörter

Keywords

Navigation