Skip to main content
Log in

Präoperative audiologische Evaluation und postoperative Verlaufsdiagnostik bei Cochleaimplantatversorgung

Bedeutung objektiver Testverfahren

Preoperative auditory evaluation and postoperative follow-up in cochlear implantees

The role of objective measures

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Das Hauptziel der Diagnostik vor Cochleaimplantat(CI)-Versorgung ist es, die vorliegende Hörstörung umfassend und multidisziplinär zu erfassen, um anschließend so früh wie möglich mit der Therapie zu beginnen. Die (päd)audiologische Untersuchung umfasst dabei eine Kombination subjektiver und objektiver Methoden nach dem „Puzzle-Prinzip“. In der postoperativen Verlaufsdiagnostik können mit objektiven Untersuchungsmethoden wertvolle Informationen über die Verarbeitung der angebotenen Reize im auditorischen System gewonnen werden. Insbesondere bei Säuglingen und Kleinkindern sowie nichtkooperativen Patienten kann auf Basis der Ergebnisse die Sprachprozessoranpassung optimiert, der Hörgewinn beurteilt und ggf. die Therapiestrategie angepasst werden. Frühe auditorische Potenziale (FAEP) sind die am häufigsten genutzte Methode zur Abschätzung der Hörschwelle sowie zur Beurteilung von Reifung und Integrität der Hörbahn bis zur unteren Hirnstammebene. Dabei ermöglicht die Verwendung bandbegrenzter Stimuli eine frequenzspezifische Bestimmung der Reizantwortschwelle, die Analyse der stationären „auditory steady state responses“ (ASSR) bieten darüber hinaus die Vorteile einer objektiven automatisierten Detektion. Elektrocochleographie (ECochG) und elektrisch evozierte Hirnstammpotenziale (E-FAEP) sind wichtige Informationsquellen für spezielle Fragestellungen. Die kortikalen auditorisch evozierten Potenziale nach Stimulation mit Sprachreizen oder Ton-Bursts scheinen eine vielversprechende Methode zu sein; aufgrund der hohen Variabilität der Potenziale ist ihre klinische Anwendung jedoch derzeit noch beschränkt. Die Kombination subjektiver und objektiver audiologischer Methoden führt zu einer signifikanten Zunahme der Genauigkeit der präoperativen Diagnosestellung und der postoperativen Verlaufsdiagnostik.

Abstract

The primary diagnostic aim prior to cochlear implantation is establishment of a comprehensive and multidisciplinary diagnosis, in order to subsequently begin therapy as early as possible. Audiological evaluation prior to implantation employs a test battery-approach, including subjective and objective procedures. Objective measures show high reliability and therefore play a major role in the diagnosis of difficult-to-test subjects such as infants and young children. During postoperative follow-up, objective measures offer a valid method for analyzing the effects of different stimuli on the auditory system. Particularly in infants, children, and uncooperative patients, the results of these tests enable the speech processor settings to be optimized, the hearing benefit to be assessed, and treatment to be adapted accordingly. Auditory brainstem responses (ABR) offer an excellent test/retest and inter-/intrarater reliability and validity, and are the most commonly used method for objective hearing threshold estimation and evaluation of the functional integrity of the lower auditory pathway. The use of narrow-band stimuli allows frequency-specific threshold estimation; analysis of stationary auditory steady state potentials (ASSR) adds the advantages of automated objective detection. Electrocochleography and electrically evoked ABR give valuable information in special cases. The use of cortical potentials (CAEP) in response to speech stimuli is quite promising, although the high response variability currently limits this method’s clinical application. An audiological test-battery approach combining the results of subjective and objective measures leads to significantly increased reliability of preoperative diagnosis and postoperative follow-up in cochlear implantees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (2012) S2k-Leitlinie: Cochlea-Implantat Versorgung und zentral-auditorische Implantate, Langfassung. http://www.awmf.org/uploads/tx_szleitlinien/017-071l_S2k_Cochlea_Implant_Versorgung_2012-05_01.pdf. Zugegriffen: 02 Mai 2012

  2. Bahmer A, Polak M, Baumann U (2010) Recording of electrically evoked auditory brainstem responses after electrical stimulation with biphasic, triphasic and precision triphasic pulses. Hear Res 259:75–85

    Article  PubMed  Google Scholar 

  3. Cardon G, Sharma A (2013) Central auditory maturation and behavioral outcome in children with auditory neuropathy spectrum disorder who use cochlear implants. Int J Audiol 52:577–586

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cardon G, Campbell J, Sharma A (2012) Plasticity in the developing auditory cortex: Evidence from children with sensorineural hearing loss and auditory neuropathy spectrum disorder. J Am Acad Audiol 23:396–411

    PubMed  PubMed Central  Google Scholar 

  5. Cebulla M, Shehata-Dieler W (2012) ABR-based newborn hearing screening with MB11 BERAphone(R) using an optimized chirp for acoustical stimulation. Int J Pediatr Otorhinolaryngol 76:536–543

    Article  PubMed  Google Scholar 

  6. Cebulla M, Sturzebecher E, Elberling C et al (2007) New clicklike stimuli for hearing testing. J Am Acad Audiol 18:725–738

    Article  PubMed  Google Scholar 

  7. Dau T, Wegner O, Mellert V et al (2000) Auditory brainstem responses with optimized chirp signals compensating basilar-membrane dispersion. J Acoust Soc Am 107:1530–1540

    Article  CAS  PubMed  Google Scholar 

  8. Despland PA, Galambos R (1980) Use of the auditory brainstem responses by prematures and newborns infants. Neuropadiatrie 11:99–107

    Article  CAS  PubMed  Google Scholar 

  9. Elberling C, Don M, Cebulla M et al (2007) Auditory steady-state responses to chirp stimuli based on cochlear traveling wave delay. J Acoust Soc Am 122:2772–2785

    Article  PubMed  Google Scholar 

  10. Gardner-Berry K, Purdy SC, Ching TY et al (2015) The audiological journey and early outcomes of twelve infants with auditory neuropathy spectrum disorder from birth to two years of age. Int J Audiol 54:524–535

    Article  PubMed  Google Scholar 

  11. Harrison RV, Gordon KA, Papsin BC et al (2015) Auditory neuropathy spectrum disorder (ANSD) and cochlear implantation. Int J Pediatr Otorhinolaryngol 79:1980–1987

    Article  PubMed  Google Scholar 

  12. Kim K, Punte AK, Mertens G et al (2015) A novel method for device-related electroencephalography artifact suppression to explore cochlear implant-related cortical changes in single-sided deafness. J Neurosci Methods 255:22–28

    Article  PubMed  Google Scholar 

  13. Kraus N, Micco AG, Koch DB et al (1993) The mismatch negativity cortical evoked potential elicited by speech in cochlear-implant users. Hear Res 65:118–124

    Article  CAS  PubMed  Google Scholar 

  14. Lonka E, Kujala T, Lehtokoski A et al (2004) Mismatch negativity brain response as an index of speech perception recovery in cochlear-implant recipients. Audiol Neurotol 9:160–162

    Article  Google Scholar 

  15. Mc Laughlin M, Lopez Valdes A, Reilly RB et al (2013) Cochlear implant artifact attenuation in late auditory evoked potentials: A single channel approach. Hear Res 302:84–95

    Article  PubMed  Google Scholar 

  16. Mcmahon CM, Patuzzi RB, Gibson WP et al (2008) Frequency-specific electrocochleography indicates that presynaptic and postsynaptic mechanisms of auditory neuropathy exist. Ear Hear 29:314–325

    Article  PubMed  Google Scholar 

  17. Muhler R, Hoth S (2014) Objective diagnostic methods in pediatric audiology. HNO 62:702–717

    Article  CAS  PubMed  Google Scholar 

  18. Ponton CW, Don M (1995) The mismatch negativity in cochlear implant users. Ear Hear 16:131–146

    Article  CAS  PubMed  Google Scholar 

  19. Ponton CW, Don M, Eggermont JJ et al (1996) Maturation of human cortical auditory function: Differences between normal-hearing children and children with cochlear implants. Ear Hear 17:430–437

    Article  CAS  PubMed  Google Scholar 

  20. Ponton CW, Eggermont JJ, Don M et al (2000) Maturation of the mismatch negativity: Effects of profound deafness and cochlear implant use. Audiol Neurotol 5:167–185

    Article  CAS  Google Scholar 

  21. Purdy SC, Katsch R, Dillon H et al (2005) Aided cortical auditory evoked potentials for hearing instrument evaluation in infants. In: Seewald RC, Bamford JM (Hrsg) A Sound Foundation through Early Amplification. Proceedings of the Third International Conference. Phonak AG, Stafa, S 115–127

    Google Scholar 

  22. Santarelli R (2010) Information from cochlear potentials and genetic mutations helps localize the lesion site in auditory neuropathy. Genome Med 2:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Santarelli R, Arslan E (2002) Electrocochleography in auditory neuropathy. Hear Res 170:32–47

    Article  PubMed  Google Scholar 

  24. Sharma A, Kraus N, Mcgee TJ et al (1997) Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroencephalogr Clin Neurophysiol 104:540–545

    Article  CAS  PubMed  Google Scholar 

  25. Sharma A, Dorman MF, Spahr AJ (2002) A sensitive period for the development of the central auditory system in children with cochlear implants: implications for age of implantation. Ear Hear 23:532–539

    Article  PubMed  Google Scholar 

  26. Sharma A, Dorman M, Spahr A et al (2002) Early cochlear implantation in children allows normal development of central auditory pathways. Ann Otol Rhinol Laryngol Suppl 189:38–41

    Article  PubMed  Google Scholar 

  27. Sharma A, Tobey E, Dorman M et al (2004) Central auditory maturation and babbling development in infants with cochlear implants. Arch Otolaryngol Head Neck Surg 130:511–516

    Article  PubMed  Google Scholar 

  28. Sharma A, Martin K, Roland P et al (2005) P1 latency as a biomarker for central auditory development in children with hearing impairment. J Am Acad Audiol 16:564–573

    Article  PubMed  Google Scholar 

  29. Sharma A, Nash AA, Dorman M (2009) Cortical development, plasticity and re-organization in children with cochlear implants. J Commun Disord 42:272–279

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sharma A, Glick H, Campbell J et al (2013) Central audtiory development in children with hearing loss: Clinical relevance of the P1 Caep Biomarker in hearing-impaired children with multiple disabilities. Hearing Balance Commun 11:110–120

    Article  Google Scholar 

  31. Stuermer KJ, Beutner D, Foerst A et al (2015) Electrocochleography in children with auditory synaptopathy/neuropathy: Diagnostic findings and characteristic parameters. Int J Pediatr Otorhinolaryngol 79:139–145

    Article  PubMed  Google Scholar 

  32. Wagner H, Gräbel S, Shehata-Dieler WE et al (2005) Klinische Nutzung der binauralen Interaktionskomponente in akustisch bzw. elektrisch evozierten auditorischen Hirnstammpotentialen (A-BAEP bzw. E‑BAEP). Z Audiol 44:174–185

    Google Scholar 

  33. Wesarg T, Arndt S, Aschendorff A, Laszig R, Beck R, Jung L, Zirn S (2016) Intra- und elektrophysiologische Diagnostik. HNO. doi:10.1007/s00106-016-0195-x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Großmann.

Ethics declarations

Interessenkonflikt

W. Shehata-Dieler und W. Großmann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehata-Dieler, W., Großmann, W. Präoperative audiologische Evaluation und postoperative Verlaufsdiagnostik bei Cochleaimplantatversorgung. HNO 65, 298–307 (2017). https://doi.org/10.1007/s00106-016-0214-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-016-0214-y

Schlüsselwörter

Keywords

Navigation