Skip to main content
Log in

Intra- und postoperative elektrophysiologische Diagnostik

Intra- and postoperative electrophysiological diagnostics

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Im Rahmen der Cochleaimplantat (CI)-Versorgung werden sowohl intraoperativ als auch postoperativ verschiedene elektrische und elektrophysiologische Diagnostikverfahren eingesetzt, bei denen elektrische Messgrößen vom CI erfasst und elektrophysiologische Messungen bei CI-Patienten durchgeführt werden. Zu den elektrophysiologischen Diagnostikverfahren zählen die Messung der elektrisch evozierten Summenaktionspotenziale des Hörnervs, die Registrierung der elektrisch evozierten auditorischen Hirnstammpotenziale und die Erfassung der elektrisch evozierten auditorischen kortikalen Potenziale. Diese Potenziale widerspiegeln die Erregung des Hörnervs und die Reizverarbeitung in verschiedenen Stationen der aufsteigenden Hörbahn bei intracochleärer elektrischer Stimulation mittels eines CI. Bei den aktuellen CI sind die Beurteilung der Elektrodenlage sowie die Prüfung der Ankopplung des Implantats an den Hörnerv wichtige Anwendungsgebiete der elektrophysiologischen Diagnostikverfahren. Ein weiteres bedeutendes Einsatzfeld stellt die Prüfung der Reizverarbeitung in der Hörbahn dar. Das Hauptanwendungsgebiet dieser Verfahren bildet jedoch die Unterstützung der Anpassung der CI-Sprachprozessoren bei Säuglingen und Kleinkindern auf der Basis elektrophysiologischer Schwellen.

Abstract

Within the context of treatment with cochlear implants (CIs), different electrical and electrophysiological diagnostic procedures are applied both intra- and postoperatively. These assess electrical measures from the CI and electrophysiological measures from CI patients, respectively. The electrophysiological diagnostic procedures comprise measurement of electrically evoked compound action potentials of the auditory nerve, the registration of electrically evoked auditory brainstem potentials and the assessment of electrically evoked auditory cortical potentials. These potentials reflect auditory nerve excitation and stimulus processing in different parts of the ascending auditory pathway for intracochlear electrical stimulation via a CI. For current CIs, assessment of electrode position and examination of the implant’s coupling to the auditory nerve are important domains of application for electrophysiological diagnostic procedures. Another substantial application area is the examination of stimulus processing in the auditory pathway. However, the main field of application of these procedures is supporting the fitting of CI speech processors in infants and toddlers on the basis of electrophysiological thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Akin I, Mutlu M, Kuran G, Dincer H, Arnold L, Boyle P (2008) One-year results of the banded neural response imaging study. Otol Neurotol 29(5):635–638

    Article  PubMed  Google Scholar 

  2. Akin I, Kuran G, Saka C, Vural M (2006) Preliminary results on correlation between neural response imaging and ‚most comfortable levels‘ in cochlear implantation. J Laryngol Otol 120(4):261–265

    Article  CAS  PubMed  Google Scholar 

  3. Alvarez I, Torre A de la, Sainz M, Roldán C, Schoesser H, Spitzer P (2010) Using evoked compound action potentials to assess activation of electrodes and predict C‑levels in the Tempo+ cochlear implant speech processor. Ear Hear 31(1):134–145

    Article  PubMed  Google Scholar 

  4. Arndt S, Beck R, Schild C et al (2010) Management of cochlear implantation in patients with malformations. Clin Otolaryngol 35(3):220–227

    Article  CAS  PubMed  Google Scholar 

  5. Aschendorff A, Laszig R, Maier W et al (2009) Kochleaimplantat bei Innenohrfehlbildungen. HNO 57(6):533–541

    Article  CAS  PubMed  Google Scholar 

  6. Basta D, Todt I, Goepel F, Ernst A (2008) Loss of saccular function after cochlear implantation: the diagnostic impact of intracochlear electrically elicited VEMPs. Audiol Neurotol 13(3):187–192

    Article  CAS  Google Scholar 

  7. Battmer RD, Laszig R, Lehnhardt E (1990) Electrically elicited stapedius reflex in cochlear implant patients. Ear Hear 11(5):370–374

    Article  CAS  PubMed  Google Scholar 

  8. Borne B van den, Snik AF, Mens LH et al (1996) Stapedius reflex measurements during surgery for cochlear implantation in children. Am J Otol 17(4):554–558

    PubMed  Google Scholar 

  9. Brown CJ, Abbas PJ, Etlert CP, O’Brient S, Oleson JJ (2010) Effects of long-term use of a cochlear implant on the electrically evoked compound action potential. J Am Acad Audiol 21(1):5–15

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brown CJ (2003) Clinical uses of electrically evoked auditory nerve and brainstem responses. Curr Opin Otolaryngol Head Neck Surg 11(5):383–387

    Article  PubMed  Google Scholar 

  11. Brown CJ, Hughes ML, Luk B et al (2000) The relationship between EAP and EABR thresholds and levels used to program the Nucleus 24 speech processor: data from adults. Ear Hear 21(2):151–163

    Article  CAS  PubMed  Google Scholar 

  12. Brown CJ, Abbas PJ, Gantz BJ (1998) Preliminary experience with neural response telemetry in the Nucleus CI24M cochlear implant. Am J Otol 19(3):320–327

    CAS  PubMed  Google Scholar 

  13. Brown CJ, Abbas PJ, Fryauf-Bertschy H, Kelsay D, Gantz BJ (1994) Intraoperative and postoperative electrically evoked auditory brain stem responses in Nucleus cochlear implant users: implications for the fitting process. Ear Hear 15(2):168–176

    Article  CAS  PubMed  Google Scholar 

  14. Cafarelli Dees D, Dillier N, Lai WK et al (2005) Normative findings of electrically evoked compound action potential measurements using the neural response telemetry of the Nucleus CI24M cochlear implant system. Audiol Neurootol 10(2):105–116

    Article  Google Scholar 

  15. Caner G, Olgun L, Gultekin G, Balaban M (2007) Optimizing fitting in children using objective measures such as neural response imaging and electrically evoked stapedius reflex threshold. Otol Neurotol 28(5):637–640

    Article  PubMed  Google Scholar 

  16. Cinar BC, Atas A, Sennaroglu G, Sennaroglu L (2011) Evaluation of objective test techniques in cochlear implant users with inner ear malformations. Otol Neurotol 32(7):1065–1074

    Article  PubMed  Google Scholar 

  17. Cohen LT, Richardson LM, Saunders E, Cowan RS (2003) Spatial spread of neural excitation in cochlear implant recipients: comparison of improved ECAP method and psychophysical forward masking. Hear Res 179(1-2):72–87

    Article  PubMed  Google Scholar 

  18. Cullington H (2000) Preliminary neural response telemetry results. Br J Audiol 34(3):131–140

    Article  CAS  PubMed  Google Scholar 

  19. Deutsche Gesellschaft für Audiologie (2015) Audiologische Leistungen nach der CI-Indikation. Z Audiol 54(1):36–37

    Google Scholar 

  20. Dijk B van, Botros AM, Battmer RD et al (2007) Clinical results of AutoNRT, a completely automatic ECAP recording system for cochlear implants. Ear Hear 28(4):558–570

    Article  PubMed  Google Scholar 

  21. Di Nardo W, Ippolito S, Quaranta N, Cadoni G, Galli J (2003) Correlation between NRT measurement and behavioural levels in patients with the Nucleus 24 cochlear implant. Acta Otorhinolaryngol Ital 23(5):352–355

    PubMed  Google Scholar 

  22. Eisen MD, Franck KH (2004) Electrically evoked compound action potential amplitude growth functions and HiResolution programming levels in pediatric CII implant subjects. Ear Hear 25(6):528–538

    Article  PubMed  Google Scholar 

  23. Franck KH, Norton SJ (2001) Estimation of psychophyical levels using the electrically evoked compound action potential measured with the neural response telemetry capabilities of Cochlear Corporation’s CI24M device. Ear Hear 22(4):289–299

    Article  CAS  PubMed  Google Scholar 

  24. Gärtner L, Lenarz T, Joseph G, Büchner A (2010) Clinical use of a system for the automated recording and analysis of electrically evoked compound action potentials (ECAPs) in cochlear implant patients. Acta Otolaryngol 130(6):724–732

    Article  PubMed  Google Scholar 

  25. Gibson WP, Sanli H (2007) Auditory neuropathy: an update. Ear Hear 28(2 Suppl):102S–106S

    Article  PubMed  Google Scholar 

  26. Gordon KA, Papsin BC, Harrison RV (2004) Toward a battery of behavioral and objective measures to achieve optimal cochlear implant stimulation levels in children. Ear Hear 25(5):447–463

    Article  PubMed  Google Scholar 

  27. Grolman W, Maat A, Verdam F et al (2009) Spread of excitation measurements for the detection of electrode array foldovers: a prospective study comparing 3‑dimensional rotational x‑ray and intraoperative spread of excitation measurements. Otol Neurotol 30(1):27–33

    Article  PubMed  Google Scholar 

  28. Han DM, Chen XQ, Zhao XT et al (2005) Comparisons between neural response imaging thresholds, electrically evoked auditory reflex thresholds and most comfortable loudness levels in CII Bionic Ear users with HiResolution sound processing strategies. Acta Otolaryngol 125(7):732–735

    Article  PubMed  Google Scholar 

  29. Holstad B, Sonneveldt VG, Fears BT et al (2009) Relation of electrically evoked compound action potential thresholds to behavioral T‑ and C‑levels in children with cochlear implants. Ear Hear 30(1):115–127

    Article  PubMed  Google Scholar 

  30. Hughes ML (2010) Fundamentals of Clinical ECAP Measures in Cochlear Implants: Part 1: Use of the ECAP in Speech Processor Programming. AudiologyOnline. 2nd ed. http://www.audiologyonline.com/articles/fundamentals-clinical-ecap-measures-in-846. Zugegriffen: 20. Dez 2015

    Google Scholar 

  31. Hughes ML, Brown CJ, Abbas PJ, Wolaver AA, Gervais JP (2000) Comparison of EAP thresholds with MAP levels in the Nucleus 24 cochlear implant: Data from children. Ear Hear 21(2):164–174

    Article  CAS  PubMed  Google Scholar 

  32. Jeon EK, Brown CJ, Etler CP, O’Brien S, Chiou LK, Abbas PJ (2010) Comparison of electrically evoked compound action potential thresholds and loudness estimates for the stimuli used to program the Advanced Bionics cochlear implant. J Am Acad Audiol 21(1):16–27

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kileny PR, Meiteles LZ, Zwolan TA, Telian SA (1995) Cochlear implant device failure: diagnosis and management. Am J Otol 16(2):164–171

    CAS  PubMed  Google Scholar 

  34. Kosaner J, Anderson I, Turan Z, Deibl M (2009) The use of ESRT in fitting children with cochlear implants. J Int Adv Otol 5(1):70–79

    Google Scholar 

  35. Lorens A, Walkowiak A, Piotrowska A, Skarzynski H, Anderson I (2004) ESRT and MCL correlations in experienced paediatric cochlear implant users. Cochlear Implants Int 5(1):28–37

    Article  PubMed  Google Scholar 

  36. Mason S (2003) The electrically evoked auditory brainstem response. In: Cullington HE (Hrsg) Cochlear Implants: Objective Measures. Whurr, London and Philadelphia, S 130–159

    Google Scholar 

  37. Mason S (1997) Keynote lecture: objective measures. Am J Otol 18(6 Suppl):S84–S87

    CAS  PubMed  Google Scholar 

  38. Mason SM, Sheppard S, Garnham CW, Lutman ME, O’Donoghue GM, Gibbin KP (1994) Improving the relationship of intraoperative EABR threshold to T‑level in young children receiving the Nucleus cochlear implant. In: Hochmair-Desoyer IJ, Hochmair ES (Hrsg) Advances in Cochlear Implants. Manz, Wien, S 44–49

    Google Scholar 

  39. Mens LHM (2007) Advances in cochlear implant telemetry: evoked neural responses, electrical field imaging, and technical integrity. Trends Amplif 11(3):143–159

    Article  PubMed  PubMed Central  Google Scholar 

  40. Michel F (2016) Progressively recovering auditory brainstem response in a cochlear-implanted child after meningitis: a case report. Otol Neurotol 37(1):16–18

    Article  PubMed  Google Scholar 

  41. Miller CA, Brown CJ, Abbas PJ, Chi SL (2008) The clinical application of potentials evoked from the peripheral auditory system. Hear Res 242(1-2):184–197

    Article  PubMed  Google Scholar 

  42. Mittal R, Panwar SS (2009) Correlation between intra-operative high rate neural response telemetry measurements and behaviourally obtained threshold and comfort levels in patients using Nucleus 24 cochlear implants. Cochlear Implants Int 10(2):103–111

    Article  CAS  PubMed  Google Scholar 

  43. Nevoux J, Loundon N, Leboulanger N et al (2010) Cochlear implant in the carotid canal. Case report and literature review. Int J Pediatr Otorhinolaryngol 74(6):701–703

    Article  CAS  PubMed  Google Scholar 

  44. Pelizzone M, Kasper A, Montandon P (1989) Electrically evoked responses in cochlear implant patients. Audiology 28(4):230–238

    Article  CAS  PubMed  Google Scholar 

  45. Plant K, Law MA, Whitford L et al (2005) Evaluation of streamlined programming procedures for the Nucleus cochlear implant with the contour electrode array. Ear Hear 26(6):651–668

    Article  PubMed  Google Scholar 

  46. Poley M, Overmyer E, Craun P et al (2015) Does pediatric cochlear implant insertion technique affect intraoperative neural response telemetry thresholds? Int J Pediatr Otorhinolaryngol 79(9):1404–1407

    Article  PubMed  Google Scholar 

  47. Potts LG, Skinner MW, Gotter BD, Strube MJ, Brenner CA (2007) Relation between neural response telemetry thresholds, T‑ and C‑levels, and loudness judgments in 12 adult Nucleus 24 cochlear implant recipients. Ear Hear 28(4):495–511

    Article  PubMed  Google Scholar 

  48. Rajati M, Ghassemi MM, Bakhshaee M, Tale MR, Tayarani H (2014) Effect of stylet removal on neural response telemetry and stapedial reflex thresholds during cochlear implantation. Auris Nasus Larynx 41(3):255–258

    Article  PubMed  Google Scholar 

  49. Sharma A, Dorman MF, Spahr AJ (2002) A sensitive period for the development of the central auditory system in children with cochlear implants: implications for age of implantation. Ear Hear 23(6):532–539

    Article  PubMed  Google Scholar 

  50. Spivak L, Auerbach C, Vambutas A, Geshkovich S, Wexler L, Popecki B (2011) Electrical compound action potentials recorded with automated neural response telemetry: threshold changes as a function of time and electrode position. Ear Hear 32(1):104–113

    Article  PubMed  Google Scholar 

  51. Stephan K, Welzl-Müller K (2000) Post-operative stapedius reflex tests with simultaneous loudness scaling in patients supplied with cochlear implants. Audiology 39(1):13–18

    Article  CAS  PubMed  Google Scholar 

  52. Tange RA, Grolman W, Maat A (2006) Intracochlear misdirected implantation of a cochlear implant. Acta Otolaryngol 126(6):650–652

    Article  CAS  PubMed  Google Scholar 

  53. Todt I, Basta D, Ernst A (2011) Helix electrode pull back: electrophysiology and surgical results. Cochlear Implants Int 12(Suppl 1):S73–S75

    Article  Google Scholar 

  54. Valero J, Blaser S, Papsin BC, James AL, Gordon KA (2012) Electrophysiologic and behavioral outcomes of cochlear implantation in children with auditory nerve hypoplasia. Ear Hear 33(1):3–18

    Article  PubMed  Google Scholar 

  55. Viccaro M, Covelli E, Seta E de et al (2009) The importance of intra-operative imaging during cochlear implant surgery. Cochlear Implants Int 10(4):198–202

    Article  PubMed  Google Scholar 

  56. Walkowiak A, Lorens A, Polak M et al (2011) Evoked stapedius reflex and compound action potential thresholds versus most comfortable loudness level: assessment of their relation for charge-based fitting strategies in implant users. ORL J Otorhinolaryngol Relat Spec 73(4):189–195

    Article  PubMed  Google Scholar 

  57. Wesarg T, Arndt S, Aschendorff A, Laszig R, Zirn S (2014) Intraoperative audiologisch-technische Diagnostik bei der Cochleaimplantatversorgung. HNO 62(10):725–734

    Article  CAS  PubMed  Google Scholar 

  58. Willeboer C, Smoorenburg GF (2006) Comparing cochlear implant users‘ speech performance with processor fittings based on conventionally determined T and C levels or on compound action potential thresholds and live-voice speech in a prospective balanced crossover study. Ear Hear 27(6):789–798

    Article  PubMed  Google Scholar 

  59. Wolfe J, Kasulis H (2008) Relationships among objective measures and speech perception in adult users of the HiResolution Bionic Ear. Cochlear Implants Int 9(2):70–81

    Article  PubMed  Google Scholar 

  60. Yamazaki H, Naito Y, Fujiwara K et al (2014) Electrically evoked auditory brainstem response-based evaluation of the spatial distribution of auditory neuronal tissue in common cavity deformities. Otol Neurotol 35(8):1394–1402

    Article  PubMed  Google Scholar 

  61. Zirn S, Arndt S, Aschendorff A, Wesarg T (2015) Interaural stimulation timing in single sided deaf cochlear implant users. Hear Res 328:148–156

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Wesarg.

Ethics declarations

Interessenkonflikt

T. Wesarg, S. Arndt, A. Aschendorff, R. Laszig und R. Beck geben an, dass sie von allen aufgeführten CI-Herstellern Unterstützung für Forschungsprojekte erhalten. L. Jung und S. Zirn geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wesarg, T., Arndt, S., Aschendorff, A. et al. Intra- und postoperative elektrophysiologische Diagnostik. HNO 65, 308–320 (2017). https://doi.org/10.1007/s00106-016-0195-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-016-0195-x

Schlüsselwörter

Keywords

Navigation