Skip to main content
Log in

Tonfrequenzevozierte Potenziale

Optimierung von Reizpolarität, Reizrate, Reizdauer, Notched-Noise-Pegel und Ermittlung von Potenzialschwellen bei normalhörigen Probanden

Frequency specific auditory evoked responses

Experiments on stimulus polarity, sweep frequency, stimulus duration, notched-noise masking level, and threshold estimation in volunteers with normal hearing

  • Phoniatrie und Pädaudiologie
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Die Ableitung tonfrequenzevozierter Potenziale mit Notched-Noise-Maskierung wird zur frequenzspezifischen Schätzung von Hörschwellen verwendet. Zur Konfiguration hinsichtlich Reizpolarität, -rate, -dauer und Pegelverhältnis zwischen Sinuston und Notched-Noise sind nur wenige Arbeiten bekannt, besonders auch hinsichtlich einer Prüffrequenz 0,25 kHz. Deshalb wurde ein hierarchisch aufgebauter Versuchsplan zur Reizpolarität, Reizrate, Reizdauer und Notched-Noise-Maskierung entwickelt. Ziel war es, Mittelungsamplituden und Kurvenkorrelation bei gleichzeitig möglichst kurzer Messzeit zu optimieren. Der Versuchsplan wurde an hörgesunden Probanden (n=29) im Alter von 20–41 Jahren angewendet. Es stellte sich heraus, dass eine alternierende Reizpolarität mit einer Reizrate von 43,5/s die höchsten Amplituden (0,2–0,4 mV) und Kurvenkorrelationen (0,49–0,91) evozierten. Außerdem zeigte sich, dass Reizdauer und Notched-Noise-Pegel prüffrequenzbezogen eingestellt werden sollten (Reizdauer 0,25 kHz: 4 ms, 0,5 Hz: 2 ms, 1–4 kHz: 1 ms, Notched-Noise-Pegel 0,25–0,5 kHz: +10 dB, 1–4 kHz: ±0 dB). Die an den untersuchten normalhörigen Probanden gefundenen Potenzialschwellen wichen zu 93% nicht mehr als ±5 dB von den psychoakustischen Schwellen ab. Weitere Untersuchungen müssen die Abweichungen an schwerhörigen Individuen ermitteln.

Abstract

Auditory evoked responses to tone-pips in notched-noise provide frequency specific estimations of thresholds. Most often, test frequencies are 0.5–4 kHz. Thresholds are expected to match with a high degree to behavioral thresholds. However, only few studies are available containing data on stimulus and averaging parameters, especially at a test frequency of 0.25 kHz. In order to find “optimal” parameters for a widely used device (Nicolet Spirit Version 1.6), we designed five experiments on stimulus polarity (Exp.I), sweep frequency (Exp.II), stimulus duration (Exp.III), notched noise level (Exp.IV), and threshold estimation (Exp.V). The experiments also included a low test frequency of 0.25 kHz. These experiments were applied to 29 healthy volunteers (n=29, aged 20–41 years with normal hearing and no history of illness of the ear). We found that alternating stimulus polarity and a sweep frequency of 43.5/s evoked responses that were highest with respect to amplitudes (0.2–0.4 mV) and correlations (0.49–0.91). A novel finding of the study was that the highest amplitudes and correlations could be achieved if stimulus durations and notched-noise-levels were specifically adjusted to the test frequencies (stimulus durations 0.25 kHz: 4 ms, 0.5 Hz: 2 ms, 1–4 kHz: 1 ms, notched-noise-levels 0.25–0.5 Hz: +10 dB, 1–4 kHz: ±0 dB). Deviations from behavioral thresholds did not exceed ±5 dB in 93% of the measures. The results indicate that frequency specific auditory evoked responses provide reliable threshold estimations. Future experiments are required to confirm the threshold deviations for hard of hearing individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11

Literatur

  1. Beattie RC, Boyd RL (1985) Early/middle evoked potentials to tone bursts in quiet, white noise and notched noise. Audiology 24: 406–419

    CAS  PubMed  Google Scholar 

  2. Beattie RC, Torre P (1997) Effects of rise-fall time and repetition rate on the auditory brainstem response to 0.5 and 1 kHz tone bursts using normal-hearing and hearing-impaired subjects. Scand Audiol 26: 23–32

    CAS  PubMed  Google Scholar 

  3. Beattie RC, Moretti M, Warren V (1984) Effects of rise-fall time, frequency, and intensity on the early/middle evoked response. J Speech Hear Disord 49: 114–127

    CAS  PubMed  Google Scholar 

  4. Beattie RC, Aleks LA, Abbott CL (1994) Effects of signal-to-noise ratio on the auditory brainstem response to 0.5 and 2 kHz tone bursts in broadband noise and highpass noise or notched noise. Scand Audiol 23: 211–223

    CAS  PubMed  Google Scholar 

  5. Bell SL, Allen R, Lutman ME (2002) An investigation of the use of band-limited chirp stimuli to obtain auditory brainstem response. Int J Audiol 41: 271–278

    PubMed  Google Scholar 

  6. Brunner C, Hey C, Gall V (1998) NN-BERA: Frequenzspezifisches Latenzverhalten und Kurvenmorphologien bei hörgeschädigten Kindern. In: Gross M (Hrsg) Aktuelle phoniatrisch-pädaudiologische Aspekte 1997/1998, Bd 5. Median, Heidelberg, S 247–249

  7. Bunke D, von Specht H, Mühler R, Pethe J, Kevanishvili Z (1998) Der Einfluß der Reizanstiegszeit und der Hochpaßmaskierung auf die frühen auditorisch evozierten Potentiale. Laryngorhinootologie 77: 185–190

    CAS  PubMed  Google Scholar 

  8. Cebulla M, Stürzebecher E, Pschirrer U (2000) Registrierung der AMFR—Einfluss von Elektrodenposition und Modulationsfrequenz. Z Audiol 39: 78–85

    Google Scholar 

  9. Cobb J, Skinner P, Burns J (1978) Effects of signal rise time and frequency on the brainstem auditory evoked response. J Speech Hear Res 21: 408–416

    CAS  PubMed  Google Scholar 

  10. Galambos R, Makeig S, Talmachoff PJ (1981) A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA 78: 2643–2647

    CAS  PubMed  Google Scholar 

  11. Gorga MP, Thornton AR (1989) The choice of stimuli for ABR measurements. Ear Hear 10: 217–220

    CAS  PubMed  Google Scholar 

  12. Gorga MP, Kaminski JR, Beauchine KA, Jestaed W (1988) Auditory brainstem responses to tone bursts in normally hearing subjects. J Speech Hear Res 31: 87–97

    CAS  PubMed  Google Scholar 

  13. Hauser R (Hrsg) (1995) Anwendung otoakustischer Emissionen. Enke, Stuttgart

  14. Hecox K, Galambos R (1974) Brainstem auditory evoked responses in human infants and adults. Arch Otolaryngol 99: 30–33

    CAS  PubMed  Google Scholar 

  15. Hoth S, Lenarz T (1994) Elektrische Reaktions-Audiometrie. Springer, Berlin

  16. Hyde ML (1985) Frequency-specific BERA in infants. J Otolaryngol [Suppl] 14: 19–27

    CAS  PubMed  Google Scholar 

  17. Hyde ML, Riko K, Corbin H, Moroso M, Alberti PW (1984) A neonatal hearing screening research program using brainstem electric response audiometry. J Otolaryngol 13: 49–54

    CAS  PubMed  Google Scholar 

  18. Hyde ML, Matsumoto N, Alberti PW (1987) The normative basis for click and frequency specific BERA in high-risk infants. Acta Otolaryngol 103: 602–611

    CAS  PubMed  Google Scholar 

  19. Jacobson JT, Morehouse CR, Johnson MJ (1983) Strategies for infant auditory brainstem response assessment. Ear Hear 3: 263–270

    Google Scholar 

  20. Jerger J, Burney P, Mauldin L, Crump B (1974) Predicting hearing loss from the acoustic reflex. J Speech Hear Disord 39: 11–22

    CAS  PubMed  Google Scholar 

  21. Lehnhardt E (1996) Praxis der Audiometrie, 7. Aufl. Thieme, Stuttgart

  22. Mason SM (1984) On-line computer scoring of the auditory brainstem response for estimation of hearing theshold. Audiology 23: 277–296

    CAS  PubMed  Google Scholar 

  23. Maurer K (1988) Akustisch evozierte Potentiale (AEP). In: Maurer K, Lowitzsch K, Stöhr M (Hrsg) Evozierte Potentiale. Enke, Stuttgart, S 1–66

  24. Maurer K, Schäfer E, Leitner H (1980) The effect of varying stimulus polarity (rarefaction vs. condensation) on early auditory evoked potentials (EAEPs). Electroencephalogr Clin Neurophysiol 50: 332–334

    Google Scholar 

  25. Munnerly GM, Greville KA, Purdy SC, Keith WJ (1991) Frequency-specific auditory brainstem responses relationship to behavioral thresholds in cochlear-impaired adults. Audiology 30: 25–32

    PubMed  Google Scholar 

  26. Picton TW (1978) The strategy of evoked potential audiometry. In: Gerber SE, Mencher GT (Hrsg) Early diagnosis of hearing loss. Grune & Stratton, New York: 297–307

  27. Picton TW, Ouellette J, Hamel G, Smith AD (1979) Brainstem evoked potentials to tonepips in notched noise. J Otolaryngol 8: 289–314

    CAS  PubMed  Google Scholar 

  28. Picton TW, Durieux-Smith A, Moran LM (1994) Recording auditory brainstem responses from infants. Int J Pediatr Otorhinolaryngol 28: 93–110

    Article  CAS  PubMed  Google Scholar 

  29. Pijl S (1987) Effects of click polarity on ABR peak latency and morphology in a clinical population. J Otolaryngol 16: 89–96

    CAS  PubMed  Google Scholar 

  30. Ptok M, Ptok A, Schönweiler R (1996) Audiometrie im Säuglings- und Kleinkindesalter. Teil I: Die Entwicklung des Hörens und Besonderheiten des kindlichen Hörvermögens. HNO Aktuell 4: 61–65

    Google Scholar 

  31. Purdy SC, Houghton JM, Keith WJ, Greville KA (1989) Frequency-specific auditory brainstem responses. Effective masking levels and relationship to behavioural thresholds in normal hearing adults. Audiology 28: 82–91

    CAS  PubMed  Google Scholar 

  32. Schönweiler R, Ptok M (1995) Hörschwellendiagnostik mit frequenzspezifischer Ableitung akustisch evozierter Potentiale: Eigene Ergebnisse und methodische Aspekte. Laryngorhinootologie 74: 531–538

    PubMed  Google Scholar 

  33. Schönweiler R, Tolloczko R, Ptok M (1995) Ergebnisse der Ableitung frequenzspezifischer akustisch evozierter Potentiale mit maskierten Stimuli. HNO 106: 378–382

    Google Scholar 

  34. Schönweiler R, Ptok A, Ptok M (1996) Audiometrie im Säuglingsalter Teil III: Subjektive audiometrische Verfahren. HNO Aktuell 4: 229–234

    Google Scholar 

  35. Sininger YS, Abdala C, Cone-Wesson B (1997) Auditory threshold sensitivity of the human neonate as measured by the auditory brainstem response. Hear Res 104: 27–38

    Article  CAS  PubMed  Google Scholar 

  36. Stapells DR (1989) Auditory brainstem response assessment of infants and children. Semin Hear 10: 229–250

    Google Scholar 

  37. Stapells DR, Oates P (1997) Estimation of the pure-tone audiogram by the auditory brainstem response: A review. Audiol Neurootol 2: 257–280

    CAS  PubMed  Google Scholar 

  38. Stapells DR, Picton TW (1981) Technical aspects of brainstem evoked potential audiometry using tones. Ear Hear 2: 20–29

    CAS  PubMed  Google Scholar 

  39. Stapells DR, Linden RD, Suffield JB (1984) Human auditory steady state potentials. Ear Hear 5: 105–114

    CAS  PubMed  Google Scholar 

  40. Stapells DR, Galambos R, Costello JA, Makeig S (1988) Inconsistency of auditory middle latency and steady-state responses in infants. Electroencephalogr Clin Neurophysiol 71: 289–295

    Google Scholar 

  41. Stapells DR, Picton TW, Durieux-Smith A, Edwards CG, Moran LM (1990) Thresholds for short-latency auditory-evoked potentials to tones in notched noise in normal-hearing and hearing-impaired subjects. Audiology 29: 262–274

    CAS  PubMed  Google Scholar 

  42. Stapells DR, Gravel JS, Martin BA (1995) Thresholds for auditory brain stem responses to tones in notched noise from infants and young children with normal hearing or sensorineural hearing loss. Ear Hear 16: 361–371

    CAS  PubMed  Google Scholar 

  43. Stockard JE, Stockard JJ, Coen RW (1983) Auditory brainstem response variability in infants. Ear Hear 4: 11–23

    CAS  PubMed  Google Scholar 

  44. Stürzebecher E, Wagner H, Cebulla M, Heine S, Jerzynski P (1993) Rationale objektive Hörschwellenbestimmung mittels Tonpuls-BERA mit Notched-Noise-Maskierung. Audiol Akustik 6: 164–176

    Google Scholar 

  45. Suzuki T, Horiuchi K (1981) Rise time of pure-tone stimuli in brain-stem response audiometry. Audiology 20: 101–112

    CAS  PubMed  Google Scholar 

  46. Suzuki T, Kobayashi K (1984) An evaluation of 40-Hz event-related potentials in young children. Audiology 23: 599–604

    CAS  PubMed  Google Scholar 

  47. Suzuki T, Kobayashi K, Takagi N (1986) Effects of stimulus repetition rate on slow and fast components of auditory brain-stem responses. Electroencephalogr Clin Neurophysiol 65: 150–156

    Article  CAS  PubMed  Google Scholar 

  48. Wegner O, Dau T (2002) Frequency specific chirp-evoked auditory brainstem responses. J Acoust Soc Am 111: 1318–1329

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schönweiler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönweiler, R., Neumann, A. & Ptok, M. Tonfrequenzevozierte Potenziale. HNO 53, 983–994 (2005). https://doi.org/10.1007/s00106-004-1187-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-004-1187-9

Schlüsselwörter

Keywords

Navigation