Skip to main content
Log in

Gezüchtetes Knorpelgewebe in einem präfabrizierten, mikrovaskulären Lappen

Tissue-engineered cartilage in a prefabricated free skin flap

  • Originalien
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Präfabrikation von kutanen Lappen für die rekonstruktive Chirurgie ist relativ neu. Durch Implantation einer axialen Gefäßschlinge wird ein Gewebeareal autonomisiert. Ein so geschaffener individueller Weichteillappen kann gestielt oder frei transplantiert werden. Weitere Gewebekomponenten, wie z. B. Knorpel, wären sinnvoll. Ziel der Studie war es, die Präfabrikation durch die Implantation eines Gefäßstiels im Kaninchenmodell zu etablieren sowie erste Erkenntnisse zur Prälamination mit gezüchteten Knorpelgewebe zu gewinnen.

Material und Methoden

Aus der Knorpelbiopsie vom Ohr eines Kaninchens wurden die Chondrozyten isoliert, amplifiziert, auf ein nicht gewobenes Vlies aus einem Hyaluronsäurederivat aufgebracht und für weitere 2–3 Wochen in vitro kultiviert. Später wurden beim gleichen Tier durch Präparation einer mikrochirurgisch anastomosierten Gefäßschlinge ein Bauchhautlappen mit einem axialen Gefäßstiel präfabriziert und Zell-Biomaterial-Konstrukte im Lappen, s.c., intermuskulär und ein Leervlies als intraindividuelle Negativkontrolle implantiert. Die Tiere wurden nach 6 oder 12 Wochen geopfert.

Ergebnisse

9 von 12 operierten Tieren wurden explantiert. Die präfabrizierten Lappen waren alle über den implantierten Gefäßstiel komplett perfundiert. Alle knorpeligen Explantate zeigten geringe Deformation und Schrumpfung bei knorpelähnlicher Konsistenz, eine knorpeltypische Morphologie, die Expression von knorpelspezifischem Kollagen Typ II sowie die Synthese von Proteoglykanen. Die Leervliese wiesen keine Knorpelentwicklung auf. Es ergaben sich keine Hinweise auf entzündliche Reaktionen.

Fazit

Die Integration eines autolog gezüchteten Knorpelkonstruktes in einen präfabrizierten Bauchhautlappen konnte im Kaninchenmodell demonstriert werden.So könnten komplexe Defekte im Kopf-Hals-Bereich mit einer geringen Hebedefektmorbidität rekonstruiert werden.

Abstract

Introduction

In reconstructive surgery, the integration of tissue-engineered cartilage in a prefabricated free flap may make it possible to generate flaps combining a variety of tissue components to meet the special requirements of a particular defect. The aim of the present study was to establish the technique of prefabricating a microvascular free flap by implanting a vessel loop under a skin flap in a rabbit model. The second aim was to gather experience with prelaminating the flap with autologous tissue-engineered cartilage in terms of matrix development, inflammatory reaction and host-tissue interaction.

Methods

The microvascular flap was created by implanting a vessel loop under a random pattern abdominal skin flap. The tissue-engineered cartilage constructs were made by isolating chondrocytes from auricular biopsies. Following a period of amplification, the cells were seeded onto a non-woven scaffold made of a hyaluronic acid derivative and cultivated for 2–3 weeks. One cell-biomaterial construct was placed beneath the prefabricated flap, and the others were placed subcutaneously under the abdominal skin and intermuscularly at the lower extremity. In addition, a biomaterial sample without cells was placed subcutaneously as a control. All implanted specimens were left in position for 6 or 12 weeks. After explantation, the specimens were examined by histological and immunohistological methods. The prefabricated flap was analyzed by angiography.

Results

The prefabricated flaps showed a well-developed network of blood vessels formed by neovascularization between the implanted vessel loop and the original random-pattern blood supply. The tissue-engineered constructs remained stable in size and showed signs of tissue similar to hyaline cartilage, as evidenced by the expression of cartilage-specific collagen type II and proteoglycans. No hints of inflammatory reactions were observed.

Conclusion

These results show the potential of prefabricated flaps as custom-made flaps for reconstructive surgery in difficult circumstances, more or less independent of anatomical prerequisites. Cartilage tissue engineering provides a 3-dimensional structure with minimal donor-site morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Aigner J, Tegeler J, Hutzler P, Campoccia D, Pavesio A, Hammer C, Kastenbauer E, Naumann A (1998) Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res 42: 172–181

    CAS  PubMed  Google Scholar 

  2. Arevalo-Silva CA, Cao Y, Vacanti M, Weng Y, Vacanti CA, Eavey RD (2000) Influence of growth factors on tissue-engineered pediatric elastic cartilage. Arch Otolaryngol Head Neck Surg 126: 1234–1238

    CAS  PubMed  Google Scholar 

  3. Benya PD, Schaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30: 215–224

    CAS  PubMed  Google Scholar 

  4. Britt JC, Park SS (1998) Autogenous tissue-engineered cartilage: evaluation as an implant. Arch Otolaryngol Head Neck Surg 124: 671–677

    CAS  PubMed  Google Scholar 

  5. Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G, Williams DF (1998) Semisynthetic resorbable materials from hyaluronen esterification. Biomaterials 19: 2101–2127

    CAS  PubMed  Google Scholar 

  6. Can Z, Ercocen AR, Apaydin I, Demirseren E, Sabuncuoglu B, Yormuk E (2000). Tissue engineering of high density porous polyethylen implant for three-dimensional reconstruction: an experimental study. Scand. J Plast Reconstr Surg Hand Surg 34: 9–14

    Article  CAS  Google Scholar 

  7. Cao Y, Rodriguez A, Vacanti M, Ibarra C, Arevalo C, Vacanti CA (1998) Comparative study of the use of poly(glycolicacid), calcium alginate and pluronics in the engineering of autologous porcine cartilage. J Biomater Sci Polym Ed 9: 475–487

    CAS  PubMed  Google Scholar 

  8. Germann G, Pelzer M, Sauerbier M (1998) Prefabricated flaps, a new reconstructive concept. Orthopade 27: 451–456

    Article  CAS  PubMed  Google Scholar 

  9. Haisch A, Groger A, Radke C, Ebmeyer I, Südhoff H, Giesnick J, Jahnke V, Burmester G, Sittinger M (2000) Resorptionsprotektion autogener Knorpeltransplantate durch Polyelektrolytkomplexmembranverkapselung. HNO 48: 119–124

    Article  CAS  PubMed  Google Scholar 

  10. Hickey MJ, Wilson Y, Hurley JV, Morrison WA (1998) Mode of vascularization of control and basic fibroblast growth factor-stimulated prefabricated skin flaps. Plast Reconstr Surg 101: 1296–1304

    PubMed  Google Scholar 

  11. Hutmacher DW (2000) Scaffold in tissue engineering bone and cartilage. Biomaterials 21: 2529–2543

    Article  CAS  PubMed  Google Scholar 

  12. Isogai N, Landis W, Kim TH, Gerstenfeld LC, Upton J, Vacanti JP (1999) Formation of phalanges and small joints by tissue-engineering. J Bone Joint Surg Am 81: 306–316

    Google Scholar 

  13. Kandel R, Hurtig M, Grynpas M (1999) Characterization of the mineral in calcified articular cartilagenous tissue formed in vitro. Tissue Eng 5: 25–34

    CAS  PubMed  Google Scholar 

  14. Khouri RK, Upton J, Shaw WW (1991) Prefabrication of composite free flap through staged microvascular transfer: An experimental and clinical study. Plast Reconstr Surg 87: 108–115

    Google Scholar 

  15. Klöppel M, Nguyen TH, Graf P, Laubenbacher C, Höhnke C, Schwaiger M, Biemer E (1997) Die Neovaskularisation im präformierten Gewebelappen in Abhängigkeit vom arteriovenösen Blutfluss des implantierten Gefäßstieles. Experimentelle Untersuchung am Kaninchen. Langenbecks Arch Chir (Suppl II) 1379–1380

  16. Mark K, von der Gaus V, von der Mark H, Muller P (1977) Relationship between shape and type of collagen synthesized as chondrocytes lose their cartilage phenotype in culture. Nature 267: 531532

    Google Scholar 

  17. Meinhart J, Fussenegger M, Hobling W (1999) Stabilization of fibrin-chondrocyt constructs for cartilage reconstruction. Ann Plast Surg 42: 673–678

    CAS  PubMed  Google Scholar 

  18. Pribaz JJ, Fine N, Orgill DP (1999) Flap prefabrication in the head and neck: a 10 year experience. Plast Reconstr Surg 103: 808–820

    CAS  PubMed  Google Scholar 

  19. Pribaz JJ, Fine NA (2001) Prefabrication and prelaminated flaps for head and neck surgery. Clin Plast Surg 28: 261–272

    CAS  PubMed  Google Scholar 

  20. Rasp G, Staudenmaier R, Ledderose H, Kastenbauer E (2000) Rippenknorpelentnahme—operatives Vorgehen und postoperative Schmerzbekämpfung. Laryngorhinootologie 79: 155–159

    Article  CAS  PubMed  Google Scholar 

  21. Rotter N, Aigner J, Naumann A, Planck H, Hammer C, Burmester G, Sittinger M (1998) Cartilage reconstruction in head and neck surgery: comparison of resorbable polymer scaffolds for tissue engineering of human septal cartilage. J Biomed Mater Res 42: 347–356

    Article  CAS  PubMed  Google Scholar 

  22. Shea LD, Wang D, Franceschi RT, Mooney DJ (2000) Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffold. Tissue Eng 6: 605–617

    Article  CAS  PubMed  Google Scholar 

  23. Shen TY (1982) Microvascular transplantation of prefabricated free tight flap. Plast Reconstr Surg 69: 568

    CAS  PubMed  Google Scholar 

  24. Solchaga LA, Dennis JE, Goldberg VM, Caplan AI (1999) Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res 17: 205–213

    CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Staudenmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staudenmaier, R., Miehle, N., Kleinsasser, N. et al. Gezüchtetes Knorpelgewebe in einem präfabrizierten, mikrovaskulären Lappen. HNO 52, 510–517 (2004). https://doi.org/10.1007/s00106-003-0932-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-003-0932-9

Schlüsselwörter

Keywords

Navigation