Skip to main content
Log in

Epidermale Alternsprozesse und Anti-Aging-Strategien

Epidermal aging and anti-aging strategies

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Epitheliale Seneszenz ist ein komplexer Vorgang, der durch intrinsische und extrinsische (z. B. UV-/IR-Licht, Tabakrauch) Faktoren bedingt wird und im Kontext mit Alternsvorgängen insbesondere des Koriums und der Subkutis gesehen werden muss. Offensichtlich sind morphologische Veränderungen in Form von epithelialer Atrophie, Strukturänderungen der Basalmembran sowie Abnahme der Anzahl von Melanozyten und Langerhans-Zellen. Als Zeichen der zellulären Seneszenz gelten eine reduzierte proliferative Aktivität von Keratinozyten, eine Kumulation von keratinozytären Dysplasien, diverse Mutationen (z. B. c-Fos/c-Jun, STAT3, FoxO1) sowie multiple metabolische Aberrationen (z. B. Lipidmetabolismus, Bildung von „advanced glycation endproducts“, Aminosäurestoffwechsel). Daraus resultieren funktionelle Veränderungen, die insbesondere die physikalische (Lipiddefizit, Wasserverteilungsstörung, Mangel an hygroskopischen Substanzen), chemische (pH-Verhältnisse, Sauerstoffradikale) und immunologische Barriere betreffen. Zur Prophylaxe werden v. a. barriereprotektive Pflegepräparate, antioxidative Wirksubstanzen (z. B. Vitamin C, B3, E, Polyphenole, Flavonoide), Sonnenschutzmittel/-strategien bzw. Retinoide eingesetzt. Zur Korrektur von Veränderungen der gealterten Epidermis kommen chemische Peelingstrategien (z. B. Fruchtsäuren, β-Lipohydroxysäure, Trichloressigsäure, Phenolverbindungen) bzw. nichtablative [„intensed pulsed light“ (IPL), „pulsed dye laser“ (PDL), Nd:YAG] und ablative (CO2, Erbium-YAG) lichtgestützte Verfahren zum Einsatz.

Abstract

Epithelial senescence is a complex process depending on intrinsic as well as extrinsic factors (e.g., UV or IR light, tobacco smoke) and must be seen in the context of the aging process especially of the corium and the subcutis. Morphological alterations become apparent in the form of epithelial atrophy, structural changes within the basal membrane, and a decrease in cell count of melanocytes and Langerhans cells. Signs of cellular senescence are reduced proliferation of keratinocytes, cumulation of dysplastic keratinocytes, various mutations (e.g., c-Fos/c-Jun, STAT3, FoxO1), as well as multiple lipid or amino acid metabolic aberrations (e.g., production of advanced glycation endproducts). This causes functional changes within the physical (lipid deficiency, water distribution dysfunction, lack of hygroscopic substances), chemical (pH conditions, oxygen radicals), and immunological barrier. Prophylactically, barrier-protective care products, antioxidant substances (e.g., vitamin C, B3, E, polyphenols, flavonoids), sunscreen products/measurements, and retinoids are used. For correcting alterations in aged epidermis, chemical peelings (fruit acids, β-hydroxy acid, trichloroacetic acid, phenolic compounds), non-ablative (IPL, PDL, Nd:YAG) as well as ablative (CO2, Erbium-YAG) light-assisted methods are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Robert L, Labat-Robert J, Robert AM (2012) Physiology of skin aging. Clin Plast Surg 39:1–8

    Article  CAS  PubMed  Google Scholar 

  2. Makrantonaki E, Bekou V, Zouboulis CC (2012) Genetics and skin aging. Dermatoendocrinol 4:280–284

    Article  PubMed Central  PubMed  Google Scholar 

  3. Rzepka K, Schaarschmidt G, Nagler M, Wohlrab J (2005) [Epidermal stem cells]. J Dtsch Dermatol Ges 3:962–973

    Article  PubMed  Google Scholar 

  4. Elias PM (1996) Stratum corneum architecture, metabolic activity and interactivity with subjacent cell layers. Exp Dermatol 5:191–201

    Article  CAS  PubMed  Google Scholar 

  5. Giangreco A, Goldie SJ, Failla V, Saintigny G, Watt FM (2010) Human skin aging is associated with reduced expression of the stem cell markers beta1 integrin and MCSP. J Invest Dermatol 130:604–608

    Article  CAS  PubMed  Google Scholar 

  6. Peng Y, Xuan M, Leung VY, Cheng B (2015) Stem cells and aberrant signaling of molecular systems in skin aging. Ageing Res Rev 19:8–21

    Article  CAS  PubMed  Google Scholar 

  7. Fenske NA, Lober CW (1986) Structural and functional changes of normal aging skin. J Am Acad Dermatol 15:571–585

    Article  CAS  PubMed  Google Scholar 

  8. Gilchrest BA, Blog FB, Szabo G (1979) Effects of aging and chronic sun exposure on melanocytes in human skin. J Invest Dermatol 73:141–143

    Article  CAS  PubMed  Google Scholar 

  9. Elewa RM, Abdallah MA, Zouboulis CC (2015) Age-associated skin changes in innate immunity markers reflect a complex interaction between aging mechanisms in the sebaceous gland. J Dermatol 42:467–476

    Article  CAS  PubMed  Google Scholar 

  10. Waller JM, Maibach HI (2005) Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity. Skin Res Technol 11:221–235

    Article  PubMed  Google Scholar 

  11. Weinert BT, Timiras PS (2003) Invited review: theories of aging. J Appl Physiol (1985) 95:1706–1716

    Article  CAS  Google Scholar 

  12. Boukamp P (2005) Skin aging: a role for telomerase and telomere dynamics? Curr Mol Med 5:171–177

    Article  CAS  PubMed  Google Scholar 

  13. Kosmadaki MG, Gilchrest BA (2004) The role of telomeres in skin aging/photoaging. Micron 35:155–159

    Article  CAS  PubMed  Google Scholar 

  14. Prunier C, Masson-Genteuil G, Ugolin N, Sarrazy F, Sauvaigo S (2012) Aging and photo-aging DNA repair phenotype of skin cells-evidence toward an effect of chronic sun-exposure. Mutat Res 736:48–55

    Article  CAS  PubMed  Google Scholar 

  15. Quan C, Cho MK, Perry D, Quan T (2015) Age-associated reduction of cell spreading induces mitochondrial DNA common deletion by oxidative stress in human skin dermal fibroblasts: implication for human skin connective tissue aging. J Biomed Sci 22:62

    Article  PubMed Central  PubMed  Google Scholar 

  16. Palmer DM, Kitchin JS (2010) Oxidative damage, skin aging, antioxidants and a novel antioxidant rating system. J Drugs Dermatol 9:11–15

    PubMed  Google Scholar 

  17. El-Domyati M, Attia S, Saleh F, Brown D, Birk DE, Gasparro F, Ahmad H, Uitto J (2002) Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin. Exp Dermatol 11:398–405

    Article  CAS  PubMed  Google Scholar 

  18. Neerken S, Lucassen GW, Bisschop MA, Lenderink E, Nuijs TA (2004) Characterization of age-related effects in human skin: a comparative study that applies confocal laser scanning microscopy and optical coherence tomography. J Biomed Opt 9:274–281

    Article  PubMed  Google Scholar 

  19. Trojahn C, Dobos G, Richter C, Blume-Peytavi U, Kottner J (2015) Measuring skin aging using optical coherence tomography in vivo: a validation study. J Biomed Opt 20:045003

    Article  PubMed  Google Scholar 

  20. Harvell JD, Maibach HI (1994) Percutaneous absorption and inflammation in aged skin: a review. J Am Acad Dermatol 31:1015–1021

    Article  CAS  PubMed  Google Scholar 

  21. Grove GL (1989) Physiologic changes in older skin. Clin Geriatr Med 5:115–125

    CAS  PubMed  Google Scholar 

  22. Rinnerthaler M, Streubel MK, Bischof J, Richter K (2015) Skin aging, gene expression and calcium. Exp Gerontol 68:59–65

    Article  CAS  PubMed  Google Scholar 

  23. MacLaughlin J, Holick MF (1985) Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest 76:1536–1538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Nazzaro-Porro M, Passi S, Boniforti L, Belsito F (1979) Effects of aging on fatty acids in skin surface lipids. J Invest Dermatol 73:112–117

    Article  CAS  PubMed  Google Scholar 

  25. Wohlrab J, Klapperstuck T, Reinhardt HW, Albrecht M (2010) Interaction of epicutaneously applied lipids with stratum corneum depends on the presence of either emulsifiers or hydrogenated phosphatidylcholine. Skin Pharmacol Physiol 23:298–305

    Article  CAS  PubMed  Google Scholar 

  26. Jackson SM, Williams ML, Feingold KR, Elias PM (1993) Pathobiology of the stratum corneum. West J Med 158:279–285

    PubMed Central  CAS  PubMed  Google Scholar 

  27. McCallion R, Li Wan Po A (1993) Dry and photo-aged skin: manifestations and management. J Clin Pharm Ther 18:15–32

    Article  CAS  PubMed  Google Scholar 

  28. Ghadially R, Brown BE, Sequeira-Martin SM, Feingold KR, Elias PM (1995) The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest 95:2281–2290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Fuchs E, Raghavan S (2002) Getting under the skin of epidermal morphogenesis. Nat Rev Genet 3:199–209

    Article  CAS  PubMed  Google Scholar 

  30. Kosciuczuk EM, Lisowski P, Jarczak J, Strzalkowska N, Jozwik A, Horbanczuk J, Krzyzewski J, Zwierzchowski L, Bagnicka E (2012) Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep 39:10957–10970

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17:12276–12286

    Article  CAS  PubMed  Google Scholar 

  32. Bhushan M, Cumberbatch M, Dearman RJ, Andrew SM, Kimber I, Griffiths CE (2002) Tumour necrosis factor-alpha-induced migration of human Langerhans cells: the influence of ageing. Br J Dermatol 146:32–40

    Article  CAS  PubMed  Google Scholar 

  33. Makrantonaki E, Vogel M, Scharffetter-Kochanek K, Zouboulis CC (2015) [Skin aging: molecular understanding of extrinsic and intrinsic processes]. Hautarzt 66:730–737

    Article  CAS  PubMed  Google Scholar 

  34. Kaczvinsky JR Jr, Grimes PE (2009) Practical applications of genomics research for treatment of aging skin. J Drugs Dermatol 8:s15–s18

    PubMed  Google Scholar 

  35. Lener T, Moll PR, Rinnerthaler M, Bauer J, Aberger F, Richter K (2006) Expression profiling of aging in the human skin. Exp Gerontol 41:387–397

    Article  CAS  PubMed  Google Scholar 

  36. Capell BC, Tlougan BE, Orlow SJ (2009) From the rarest to the most common: insights from progeroid syndromes into skin cancer and aging. J Invest Dermatol 129:2340–2350

    Article  CAS  PubMed  Google Scholar 

  37. Skoczynska A, Budzisz E, Dana A, Rotsztejn H (2015) New look at the role of progerin in skin aging. Prz Menopauzalny 14:53–58

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Robinson MK, Binder RL, Griffiths CE (2009) Genomic-driven insights into changes in aging skin. J Drugs Dermatol 8:s8–s11

    PubMed  Google Scholar 

  39. Matsumura H, Urasaki N, Yoshida K, Kruger DH, Kahl G, Terauchi R (2012) SuperSAGE: powerful serial analysis of gene expression. Methods Mol Biol 883:1–17

    Article  CAS  PubMed  Google Scholar 

  40. Pageon H, Zucchi H, Dai Z, Sell DR, Strauch CM, Monnier VM, Asselineau D (2015) Biological effects induced by specific advanced glycation end products in the reconstructed skin model of aging. Biores Open Access 4:54–64

    Article  PubMed Central  PubMed  Google Scholar 

  41. Gkogkolou P, Bohm M (2012) Advanced glycation end products: key players in skin aging? Dermatoendocrinol 4:259–270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Uchiki T, Weikel KA, Jiao W, Shang F, Caceres A, Pawlak D, Handa JT, Brownlee M, Nagaraj R, Taylor A (2012) Glycation-altered proteolysis as a pathobiologic mechanism that links dietary glycemic index, aging, and age-related disease (in nondiabetics). Aging Cell 11:1–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Zhu P, Yang C, Chen LH, Ren M, Lao GJ, Yan L (2011) Impairment of human keratinocyte mobility and proliferation by advanced glycation end products-modified BSA. Arch Dermatol Res 303:339–350

    Article  CAS  PubMed  Google Scholar 

  44. Berge U, Behrens J, Rattan SI (2007) Sugar-induced premature aging and altered differentiation in human epidermal keratinocytes. Ann N Y Acad Sci 1100:524–529

    Article  CAS  PubMed  Google Scholar 

  45. Wondrak GT, Roberts MJ, Jacobson MK, Jacobson EL (2002) Photosensitized growth inhibition of cultured human skin cells: mechanism and suppression of oxidative stress from solar irradiation of glycated proteins. J Invest Dermatol 119:489–498

    Article  CAS  PubMed  Google Scholar 

  46. Calderwood SK, Murshid A, Prince T (2009) The shock of aging: molecular chaperones and the heat shock response in longevity and aging – a mini-review. Gerontology 55:550–558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Hilmenyuk T, Bellinghausen I, Heydenreich B, Ilchmann A, Toda M, Grabbe S, Saloga J (2010) Effects of glycation of the model food allergen ovalbumin on antigen uptake and presentation by human dendritic cells. Immunology 129:437–445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Chen Y, Akirav EM, Chen W, Henegariu O, Moser B, Desai D, Shen JM, Webster JC, Andrews RC, Mjalli AM, Rothlein R, Schmidt AM, Clynes R, Herold KC (2008) RAGE, ligation affects T cell activation and controls T cell differentiation. J Immunol 181:4272–4278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Sanches Silveira JE, Myaki Pedroso DM (2014) UV light and skin aging. Rev Environ Health 29:243–254

    Article  CAS  PubMed  Google Scholar 

  50. Emanuele E, Spencer JM, Braun M (2014) From DNA repair to proteome protection: new molecular insights for preventing non-melanoma skin cancers and skin aging. J Drugs Dermatol 13:274–281

    CAS  PubMed  Google Scholar 

  51. Morita A, Torii K, Maeda A, Yamaguchi Y (2009) Molecular basis of tobacco smoke-induced premature skin aging. J Investig Dermatol Symp Proc 14:53–55

    Article  CAS  PubMed  Google Scholar 

  52. Wolfle U, Seelinger G, Bauer G, Meinke MC, Lademann J, Schempp CM (2014) Reactive molecule species and antioxidative mechanisms in normal skin and skin aging. Skin Pharmacol Physiol 27:316–332

    Article  PubMed  Google Scholar 

  53. Baxter RA (2008) Anti-aging properties of resveratrol: review and report of a potent new antioxidant skin care formulation. J Cosmet Dermatol 7:2–7

    Article  PubMed  Google Scholar 

  54. Hubbard BA, Unger JG, Rohrich RJ (2014) Reversal of skin aging with topical retinoids. Plast Reconstr Surg 133:481e–490e

    Article  CAS  PubMed  Google Scholar 

  55. Sorg O, Saurat JH (2014) Topical retinoids in skin ageing: a focused update with reference to sun-induced epidermal vitamin A deficiency. Dermatology 228:314–325

    Article  CAS  PubMed  Google Scholar 

  56. Wohlrab J, Kreft D (2014) Niacinamide – mechanisms of action and its topical use in dermatology. Skin Pharmacol Physiol 27:311–315

    Article  CAS  PubMed  Google Scholar 

  57. Lorencini M, Brohem CA, Dieamant GC, Zanchin NI, Maibach HI (2014) Active ingredients against human epidermal aging. Ageing Res Rev 15C:100–115

    Article  Google Scholar 

  58. Langsdon PR, Shires CB (2012) Chemical face peeling. Facial Plast Surg 28:116–125

    Article  CAS  PubMed  Google Scholar 

  59. Trelles M, Allones I, Velez M, Mordon S (2004) Nd:YAG laser combined with IPL treatment improves clinical results in non-ablative photorejuvenation. J Cosmet Laser Ther 6:69–78

    Article  PubMed  Google Scholar 

  60. Raulin C, Greve B, Grema H (2003) IPL technology: a review. Lasers Surg Med 32:78–87

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wohlrab.

Ethics declarations

Interessenkonflikt

J. Wohlrab gibt an, Honorare für Beratung und/oder Vorträge und/oder Sponsoring für wissenschaftliche Projekte und/oder klinische Studien von folgenden Firmen erhalten zu haben: Abbott, Abbvie, Agfa, Aicuris, Allergika, Almirall, Amgene, Astellas, Biogen-Idec, Bombastus, Dermapharm, Ei, Evolva, Evonik, Galderma, Grünenthal, GSK, Janssen-Cilag, Jenapharm, Leo, L’Oréal, Mavena, Mibe, MSD, Novaliq, Novartis, Pfizer, Reddys, Riemser, Skinomics, Widmer, Wolff. K. Hilpert und L. Wolff geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wohlrab, J., Hilpert, K. & Wolff, L. Epidermale Alternsprozesse und Anti-Aging-Strategien. Hautarzt 67, 107–111 (2016). https://doi.org/10.1007/s00105-015-3734-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-015-3734-6

Schlüsselwörter

Keywords

Navigation