Skip to main content
Log in

Evidenz der Indocyaningrünfluoreszenz in der robotisch assistierten Kolorektalchirurgie

Wie ist der Status?

Evidence of indocyanine green fluorescence in robotically assisted colorectal surgery

What is the status?

  • Leitthema
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Indocyaningrün(ICG)-Fluoreszenzbildgebung wird zunehmend in verschiedenen Bereichen der Viszeralchirurgie angewandt. Die stetige Verbesserung der Technik ermöglicht einen leichten intraoperativen Einsatz und beeinflusst zunehmend operative Entscheidungsprozesse, insbesondere in der robotisch assistierten Kolorektalchirurgie.

Ziel der Arbeit

Die aktuelle Evidenz zur Anwendung von ICG-Fluoreszenzbildgebung in der robotisch assistierten Kolorektalchirurgie wird subsummiert.

Material und Methoden

Die Beurteilung der Evidenz basiert auf einer umfassenden Literaturrecherche (PubMed).

Ergebnisse

Erste einzelne Studien (Machbarkeitsstudie, Fall-Kontroll-Studie, prospektive Kohortenstudie, multizentrische Phase-II-Studie, Single-center-RCT) zeigen eine signifikante Verringerung der Inzidenz von Anastomoseninsuffizienzen (AI) nach kolorektaler Anastomose durch Nutzung von ICG-Fluoreszenzangiographie (ICG-FA; 9,1 % vs. 16,3 %; p = 0,04). Erste Machbarkeitsstudien demonstrieren Lymphknotendetektion oder -navigation sowie Ureterenvisualisierung.

Diskussion

Die ICG-FA detektiert Gewebeperfusion sicher, nebenwirkungsarm, schnell und effektiv. Sie kann intraoperative Entscheidungsprozesse beeinflussen und bestenfalls die Inzidenz von AI reduzieren. Darüber hinaus kann via ICG-Sentinel-Lymphknoten(SLN)-Detektion und Lymphknotendarstellung bzw. -navigation („lateral pelvic lymph nodes“, LPNs) Patienten möglicherweise eine präzisere Tumortherapie angeboten werden. Iatrogenen Läsionen, wie z. B. Ureterverletzungen, kann durch entsprechende Visualisierung suffizient vorgebeugt werden. Valide Daten, um standardisiert operative Konsequenzen ableiten zu können, bedürfen allerdings weiterer überzeugender multizentrischer, randomisiert kontrollierter Studien.

Abstract

Background

Indocyanine green (ICG) fluorescence imaging is increasingly being used in various areas of abdominal surgery. The constant improvement in the technology enables easy intraoperative use and progressively influences operative decision-making, also in robotically assisted colorectal surgery.

Objective

Summation of current evidence on the use of ICG fluorescence imaging in robotically assisted colorectal surgery.

Material and methods

The assessment of evidence is based on a comprehensive literature search (PubMed).

Results

First individual studies (feasibility, case matched, prospective cohort, multicenter phase II, single center randomized controlled study/trial) showed a significant reduction in the incidence of anastomotic leakage (AL) after colorectal anastomosis through the use of ICG fluorescence angiography (FA, 9.1% vs. 16.3%; p = 0.04). First feasibility studies demonstrated lymph node detection or navigation as well as ureter visualization.

Conclusion

The ICG-FA reliably detects tissue perfusion, quickly and effectively with few side effects. It can influence intraoperative decision-making and reduce AL rates. In addition, patients may be offered more precise tumor therapy via ICG sentinel lymph node (SLN) detection and lateral pelvic lymph node (LPN) mapping and navigation. Iatrogenic lesions, such as ureteral injuries can be sufficiently prevented by appropriate visualization; however, valid data in order to be able to derive standardized operative consequences require further convincing multicenter, randomized controlled trials (mRCT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Abbreviations

AI:

Anastomoseninsuffizienz

AMI:

Arteria mesenterica inferior

AMS:

Arteria mesenterica superior

FA:

„Fluorescence angiography“ (Fluoreszenzangiographie)

FDA:

„U.S. Food and Drug Administration“ (amerikanisches Pendant zum deutschen Bundesinstitut für Arzneimittel und Medizinprodukte [BfArM])

HD:

„High definition“ (hochauflösend)

ICG:

„Indocyanine green“ (Indocyaningrün)

i.v.:

intravenös

KRK:

Kolorektales Karzinom

LPNs:

„Lateral pelvic lymph nodes“ (laterale Beckenkymphknoten)

MIS/MIC:

„Minimally invasive surgery“ (minimal-invasive Chirurgie)

RCT:

„Randomised controlled trial“ (randomisiert kontrollierte Studie)

SLN:

„Sentinel lymph node“ (Sentinel-Lymphknoten)

Literatur

  1. Al-Taher M, Okamoto N, Felli E et al (2020) Noninvasive near-infrared fluorescence imaging of the ureter during robotic surgery: a demonstration in a porcine model. J Laparoendosc Adv Surg Tech A 30(9):962–966. https://doi.org/10.1089/lap.2020.0399

    Article  PubMed  Google Scholar 

  2. Alekseev M, Rybakov E, Shelygin Y et al (2020) A study investigating the perfusion of colorectal anastomoses using fluorescence angiography: results of the FLAG randomized trial. Colorectal Dis 22(9):1147–1153. https://doi.org/10.1111/codi.15037

    Article  CAS  PubMed  Google Scholar 

  3. Aoun F, Albisinni S, Zanaty M et al (2018) Indocyanine green fluorescence-guided sentinel lymph node identification in urologic cancers: a systematic review and meta-analysis. Minerva Urol Nefrol 70:361–369

    PubMed  Google Scholar 

  4. Armstrong G, Croft J, Corrigan N et al (2018) IntAct: intra-operative fluorescence angiography to prevent anastomotic leak in rectal cancer surgery: a randomized controlled trial. Colorectal Dis 20:O226–O234

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ashraf SQ, Burns EM, Jani A et al (2013) The economic impact of anastomotic leakage after anterior resections in English NHS hospitals: are we adequately remunerating them? Colorectal Dis 15:e190–198

    CAS  PubMed  Google Scholar 

  6. Baiocchi GL, Gheza F, Molfino S et al (2020) Indocyanine green fluorescence-guided intraoperative detection of peritoneal carcinomatosis: systematic review. BMC Surg 20:158–158

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Blanco-Colino R, Espin-Basany E (2018) Intraoperative use of ICG fluorescence imaging to reduce the risk of anastomotic leakage in colorectal surgery: a systematic review and meta-analysis. Tech Coloproctol 22:15–23

    CAS  PubMed  Google Scholar 

  8. Boni L, Fingerhut A, Marzorati A et al (2017) Indocyanine green fluorescence angiography during laparoscopic low anterior resection: results of a case-matched study. Surg Endosc 31:1836–1840

    PubMed  Google Scholar 

  9. Boogerd LSF, Hoogstins CES, Schaap DP et al (2018) Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: a dose-escalation pilot study. Lancet Gastroenterol Hepatol 3:181–191

    PubMed  Google Scholar 

  10. Borstlap WAA, Westerduin E, Aukema TS et al (2017) Anastomotic leakage and chronic presacral sinus formation after low anterior resection: results from a large cross-sectional study. Ann Surg 266:870–877

    PubMed  Google Scholar 

  11. Carus T, Pick P (2019) Intraoperative Fluoreszenzangiographie in der kolorektalen Chirurgie. Chirurg 90:887–890

    CAS  PubMed  Google Scholar 

  12. Caulfield H, Hyman NH (2013) Anastomotic leak after low anterior resection: a spectrum of clinical entities. JAMA Surg 148:177–182

    PubMed  Google Scholar 

  13. Chand M, Keller DS, Joshi HM et al (2018) Feasibility of fluorescence lymph node imaging in colon cancer: FLICC. Tech Coloproctol 22:271–277

    CAS  PubMed  Google Scholar 

  14. Chude GG, Rayate NV, Patris V et al (2008) Defunctioning loop ileostomy with low anterior resection for distal rectal cancer: should we make an ileostomy as a routine procedure? A prospective randomized study. Hepatogastroenterology 55:1562–1567

    CAS  PubMed  Google Scholar 

  15. Denost Q, Rouanet P, Faucheron JL et al (2017) To drain or not to drain infraperitoneal anastomosis after rectal excision for cancer: the GRECCAR 5 randomized trial. Ann Surg 265:474–480

    PubMed  Google Scholar 

  16. Diana M (2017) Enabling precision digestive surgery with fluorescence imaging. Transl Gastroenterol Hepatol 2:97

    PubMed  PubMed Central  Google Scholar 

  17. Dimitriadis N, Grychtol B, Maertins L et al (2016) Simultaneous real-time multicomponent fluorescence and reflectance imaging method for fluorescence-guided surgery. Opt Lett 41:1173–1176

    CAS  PubMed  Google Scholar 

  18. Dip FD, Nahmod M, Anzorena FS et al (2014) Novel technique for identification of ureters using sodium fluorescein. Surg Endosc 28:2730–2733

    PubMed  Google Scholar 

  19. Douissard J, Meyer J, Ris F et al (2019) Iatrogenic ureteral injuries and their prevention in colorectal surgery: results from a nationwide survey. Colorectal Dis 21:595–602

    CAS  PubMed  Google Scholar 

  20. Douissard J, Ris F, Morel P et al (2018) Current strategies to prevent iatrogenic ureteral injury during colorectal surgery. Surg Technol Int 32:119–124

    PubMed  Google Scholar 

  21. Emile SH, Elfeki H, Shalaby M et al (2017) Sensitivity and specificity of indocyanine green near-infrared fluorescence imaging in detection of metastatic lymph nodes in colorectal cancer: systematic review and meta-analysis. J Surg Oncol 116:730–740

    PubMed  Google Scholar 

  22. Ferreira H, Smith AV, Wattiez A (2019) Application of indocyanine green in gynecology: review of the literature. Surg Technol Int 34:282–292

    PubMed  Google Scholar 

  23. Gioux S, Choi HS, Frangioni JV (2010) Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging 9:237–255

    CAS  PubMed  Google Scholar 

  24. Goligher JC (1949) The blood-supply to the sigmoid colon and rectum with reference to the technique of rectal resection with restoration of continuity. Br J Surg 37:157–162

    CAS  PubMed  Google Scholar 

  25. Hammond J, Lim S, Wan Y et al (2014) The burden of gastrointestinal anastomotic leaks: an evaluation of clinical and economic outcomes. J Gastrointest Surg 18:1176–1185

    PubMed  PubMed Central  Google Scholar 

  26. Hasegawa H, Tsukada Y, Wakabayashi M et al (2020) Impact of intraoperative indocyanine green fluorescence angiography on anastomotic leakage after laparoscopic sphincter-sparing surgery for malignant rectal tumors. Int J Colorectal Dis 35:471–480

    PubMed  Google Scholar 

  27. Jafari MD, Lee KH, Halabi WJ et al (2013) The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg Endosc 27:3003–3008

    PubMed  Google Scholar 

  28. Jafari MD, Wexner SD, Martz JE et al (2015) Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II): a multi-institutional study. J Am Coll Surg 220:82–92.e1

    PubMed  Google Scholar 

  29. Karliczek A, Harlaar NJ, Zeebregts CJ et al (2009) Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery. Int J Colorectal Dis 24:569–576

    CAS  PubMed  Google Scholar 

  30. Keller DS, Ishizawa T, Cohen R et al (2017) Indocyanine green fluorescence imaging in colorectal surgery: overview, applications, and future directions. Lancet Gastroenterol Hepatol 2:757–766

    PubMed  Google Scholar 

  31. Kim HJ, Choi GS, Park JS et al (2020) S122: impact of fluorescence and 3D images to completeness of lateral pelvic node dissection. Surg Endosc 34:469–476

    PubMed  Google Scholar 

  32. Kim JC, Lee JL, Yoon YS et al (2016) Utility of indocyanine-green fluorescent imaging during robot-assisted sphincter-saving surgery on rectal cancer patients. Int J Med Robot 12:710–717

    PubMed  Google Scholar 

  33. Kobiela J, Bertani E, Petz W et al (2019) Double indocyanine green technique of robotic right colectomy: introduction of a new technique. J Min Access Surg 15:357–359

    Google Scholar 

  34. Liot E, Assalino M, Buchs NC et al (2018) Does near-infrared (NIR) fluorescence angiography modify operative strategy during emergency procedures? Surg Endosc 32:4351–4356

    PubMed  PubMed Central  Google Scholar 

  35. Marescaux J, Diana M (2015) Next step in minimally invasive surgery: hybrid image-guided surgery. J Pediatr Surg 50:30–36

    PubMed  Google Scholar 

  36. Mcdermott FD, Heeney A, Kelly ME et al (2015) Systematic review of preoperative, intraoperative and postoperative risk factors for colorectal anastomotic leaks. Br J Surg 102:462–479

    CAS  PubMed  Google Scholar 

  37. Mongin C, Maggiori L, Agostini J et al (2014) Does anastomotic leakage impair functional results and quality of life after laparoscopic sphincter-saving total mesorectal excision for rectal cancer? A case-matched study. Int J Colorectal Dis 29:459–467

    PubMed  Google Scholar 

  38. Morales-Conde S, Alarcón I, Yang T et al (2020) Fluorescence angiography with indocyanine green (ICG) to evaluate anastomosis in colorectal surgery: where does it have more value? Surg Endosc 34:3897–3907

    PubMed  Google Scholar 

  39. Orosco RK, Tsien RY, Nguyen QT (2013) Fluorescence imaging in surgery. IEEE Rev Biomed Eng 6:178–187

    PubMed  PubMed Central  Google Scholar 

  40. Picchetto A, Seeliger B, La Rocca S et al (2019) Fluorescence-guided detection of lymph node metastases of gastrointestinal tumors. Chirurg 90:891–898

    PubMed  Google Scholar 

  41. Ris F, Liot E, Buchs NC et al (2018) Multicentre phase II trial of near-infrared imaging in elective colorectal surgery. Br J Surg 105:1359–1367

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ris F, Yeung T, Hompes R et al (2015) Enhanced reality and intraoperative imaging in colorectal surgery. Clin Colon Rectal Surg 28:158–164

    PubMed  PubMed Central  Google Scholar 

  43. Shiomi A, Ito M, Maeda K et al (2015) Effects of a diverting stoma on symptomatic anastomotic leakage after low anterior resection for rectal cancer: a propensity score matching analysis of 1,014 consecutive patients. J Am Coll Surg 220:186–194

    PubMed  Google Scholar 

  44. Siddighi S, Yune JJ, Hardesty J (2014) Indocyanine green for intraoperative localization of ureter. Am J Obstet Gynecol 211:436.e1–436.e2

    Google Scholar 

  45. Soares AS, Lovat LB, Chand M (2019) Intracorporeal lymph node mapping in colon cancer surgery. Eur J Surg Oncol 45:2316–2318

    PubMed  Google Scholar 

  46. Son GM, Kwon MS, Kim Y et al (2019) Quantitative analysis of colon perfusion pattern using indocyanine green (ICG) angiography in laparoscopic colorectal surgery. Surg Endosc 33:1640–1649

    PubMed  Google Scholar 

  47. Spinelli A, Carvello M, Kotze PG et al (2019) Ileal pouch-anal anastomosis with fluorescence angiography: a case-matched study. Colorectal Dis 21:827–832

    CAS  PubMed  Google Scholar 

  48. Spinoglio G, Bellora P, Monni M (2016) Robotertechnologie in der kolorektalen Chirurgie. Chirurg 87:663–668

    CAS  PubMed  Google Scholar 

  49. van der Pas MH, Haglind E, Cuesta MA et al (2013) Laparoscopic versus open surgery for rectal cancer (COLOR II): short-term outcomes of a randomised, phase 3 trial. Lancet Oncol 14:210–218

    PubMed  Google Scholar 

  50. Wada T, Kawada K, Takahashi R et al (2017) ICG fluorescence imaging for quantitative evaluation of colonic perfusion in laparoscopic colorectal surgery. Surg Endosc 31:4184–4193

    PubMed  Google Scholar 

  51. Watanabe J, Ishibe A, Suwa Y et al (2020) Indocyanine green fluorescence imaging to reduce the risk of anastomotic leakage in laparoscopic low anterior resection for rectal cancer: a propensity score-matched cohort study. Surg Endosc 34:202–208

    PubMed  Google Scholar 

  52. Williamson JS, Quyn AJ, Sagar PM (2020) Rectal cancer lateral pelvic sidewall lymph nodes: a review of controversies and management. Br J Surg 107(12):1562–1569. https://doi.org/10.1002/bjs.11925

    Article  CAS  PubMed  Google Scholar 

  53. Yeung TM, Volpi D, Tullis ID et al (2016) Identifying ureters in situ under fluorescence during laparoscopic and open colorectal surgery. Ann Surg 263:e1–2

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Stoffels.

Ethics declarations

Interessenkonflikt

T.O. Vilz, J.C. Kalff und B. Stoffels geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

C. J. Bruns, Köln

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilz, T.O., Kalff, J.C. & Stoffels, B. Evidenz der Indocyaningrünfluoreszenz in der robotisch assistierten Kolorektalchirurgie. Chirurg 92, 115–121 (2021). https://doi.org/10.1007/s00104-020-01340-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-020-01340-2

Schlüsselwörter

Keywords

Navigation