Skip to main content
Log in

Biodegradierbarer Cage

Osteointegration bei Spondylodese der Schafhalswirbelsäule

Biodegradable cage

Osteointegration in spondylodesis of the sheep cervical spine

  • Originalia
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Ein biodegradierbarer Cage kann eine Vielzahl von Vorteilen gegenüber dem autologen trikortikalen Beckenkammspan und metallischen Cages bieten. Zum jetzigen Zeitpunkt steht jedoch kein solcher für die Anwendung beim Menschen zur Verfügung. Ziel dieser Studie war, 2 Fusionstechniken für die intervertebrale Spondylodese miteinander zu vergleichen. Der autologe trikortikale Beckenkammspan wurde mit einem biodegradierbaren Cage in einem tierexperimentellen Fusionsmodell für die intervertebrale Spondylodese an Schafhalswirbelsäulen von 16 ausgewachsenen Merinoschafen verglichen. Nach 12 Wochen konnte kein signifikanter Unterschied zwischen dem biodegradierbaren PLDLLA-Cage und dem trikortikalen Beckenkammspan für die intervertebrale Fusion an der Schafhalswirbelsäule gefunden werden. Jedoch zeigte der PLDLLA-Cage im gesamten Intervertebralraum Fremdkörperreaktionen von Grad I–III. Obwohl die Entstehung dieser großen Fremdkörperreaktionen derzeit noch unklar ist, kann davon ausgegangen werden, dass das bereits frühe Auftreten von großen Osteolysen und ventraler Implantatwanderung in Verbindung mit dem PLDLLA-Cage seine Anwendung beim Menschen fragwürdig erscheinen lässt.

Abstract

Bioabsorbable implants are commonplace in knee and shoulder surgery. Bioabsorbable poly(l-lactide-co-D,L-lactide) (PLDLLA) cage devices have potential benefits over autologous tricortical iliac crest bone graft and metallic cages for cervical spine interbody fusion. The purpose of this study was to compare interbody fusion of an autologous tricortical iliac crest bone graft with that of a bioabsorbable cage using a sheep cervical spine interbody fusion model. This study was designed to determine differences in (1) the ability to preserve postoperative distraction, (2) biomechanical stability, and (3) histological characteristics of intervertebral bone matrix formation. Sixteen full-grown Merino sheep underwent C3/4 discectomy and fusion. After 12 weeks, there was no significant difference between the results with the bioabsorbable PLDLLA cages and tricortical bone grafts. The cage also did not show advanced interbody fusion but did, however, show large osteolysis, which allows skepticism regarding the value of this bioabsorbable implant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1a, b
Abb. 2a, b
Abb. 3
Abb. 4
Abb. 5
Abb. 6a, b
Abb. 7a–d

Literatur

  1. Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA (1996) Complications of iliac crest bone graft harvesting. Clin Orthop 329: 300–309

    PubMed  Google Scholar 

  2. Bankwart JC, Asher MA, Hassanein RS (1995) Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 20: 1055–1060

    CAS  PubMed  Google Scholar 

  3. Boden SD, Martin GJ Jr, Horton WC, Truss TL, Sandhu HS (1998) Laparoscopic anterior spinal arthrodesis with rh BMP-2 in a titanium interbody threaded cage. J Spinal Disord 11: 95–101

    CAS  PubMed  Google Scholar 

  4. Brady JM, Cutright DE, Miller RA, Barristone GC (1973) Resorption rate, route, route of elimination, and ultrastructure of the implant size of polylactic acid in the abdominal wall of the rat. J Biomed Mater Res 7: 155–166

    CAS  PubMed  Google Scholar 

  5. Brantigan JW, Steffee AD, Geiger JM (1991) A carbon fiber implant to aid interbody lumbar fusion. Mechanical testing. Spine 16: 277–282

    Google Scholar 

  6. Brantigan JW, Mc Afee PC, Cunningham BW (1994) Interbody lumbar fusion using a carbon fiber implant versus allograft bone. An investigational study in the Spanish goat. Spine 19: 1436–1444

    CAS  PubMed  Google Scholar 

  7. Brodke DS, Dick JC, Kunz DN, McCabe R, Zdeblick TA (1997) Posterior lumbar interbody fusion. A biomechanical comparison, including a new threaded cage. Spine 22: 26–31

    Article  CAS  PubMed  Google Scholar 

  8. Brooke NS, Rorke AW, King AT, Gullan RW (1997) Preliminary experience of carbon fibre cage prostheses for treatment of cervical spine disorders. Br J Neurosurg 11: 221–227

    Article  CAS  PubMed  Google Scholar 

  9. Burger EH, Klein-Nulend J, Veldhuijzen JP (1992) Mechanical stress and osteogenesis in vitro. J Bone Miner Res 7: 327–401

    Google Scholar 

  10. Cahill DW, Martin GJ Jr, Hajjar MV, Sonstein W, Graham LB, Engelman RW (2003) Suitability of bioresorbable cages for anterior cervical fusion. J Neurosurg [Suppl 2] 98: 195–201

  11. Carter DR, Wong M (1988) Mechanical stresses and endochondral ossification in the chondroepiphysis. J Orthop Res 6: 148–154

    CAS  PubMed  Google Scholar 

  12. Cunningham BW, Kanayama M, Parker LM (1999) Osteogenic protein versus autologous interbody arthrodesis in the sheep thoracic spine. An endoscopic study using the Bagby and Kuslich interbody fusion device. Spine 24: 509–518

    Article  CAS  PubMed  Google Scholar 

  13. Cutright DE, Hunsuck EE, Beasley JD (1971) Fracture reduction using a biodegradable material, polylactic acid. J Oral Surg 29: 393–397

    CAS  PubMed  Google Scholar 

  14. David SM, Gruber HE, Mayer RA Jr, Murakami T, Tabor OB, Howard BA, Wozney JM, Hanley EN Jr (1999) Lumbar spinal fusion using recombinant human bone morphogenetic protein in the canine. A comparison of three dosages and two carriers. Spine 24: 1973–1979

    Article  CAS  PubMed  Google Scholar 

  15. Dennis S, Watkins R, Landaker S, Dillin W, Springer D (1989) Comparison of disc space heights after anterior lumbar interbody fusion. Spine 14: 876–878

    CAS  PubMed  Google Scholar 

  16. Fischgrund JS, James SB, Chabot MC, Hankin R, Herkowitz HN, Wozney JM, Shirkhoda A (1997) Augmentation of autograft using rhBMP-2 and different carrier media in the canine spinal fusion model. J Spinal Disord 10: 467–472

    CAS  PubMed  Google Scholar 

  17. Goh JC, Wong HK, Thambyah A, Yu CS (2000) Influence of PLIF cage size on lumbar spine stability. Spine 25: 35–39

    Article  CAS  PubMed  Google Scholar 

  18. Gopferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17: 103–114

    Article  CAS  PubMed  Google Scholar 

  19. Goulet JA, Senunas LE, Desilva GL, Greenfield ML (1997) Autogenous iliac crest bone graft. Complications and functional assessment. Clin Orthop 339: 76–81

    PubMed  Google Scholar 

  20. Hoffmann R, Weiler A, Helling HJ, Krettek C, Rehm KE (1997) Local foreign body reactions to biodegradable implants. A classification. Unfallchirurg 100: 658–666

    Article  CAS  PubMed  Google Scholar 

  21. Hollinger JO, Battistone GC (1988) Biodegradable bone repair materials. Synthetic polymers and ceramics. Clin Orthop 278: 290–305

    Google Scholar 

  22. Hutmacher D, Hürzeler MB, Schliephake H (1996) A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Oral Maxillofac Implants 11: 667–678

    CAS  PubMed  Google Scholar 

  23. Jost B, Cripton PA, Lund T, Oxland TR, Lippuner K, Jaeger P, Nolte LP (1998) Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J 7: 132–141

    CAS  PubMed  Google Scholar 

  24. Kandziora F, Mittlmeier T, Kerschbaumer F (1999) Stage related surgery for cervical spine instability in rheumatoid arthritis. Eur Spine J 8: 371–381

    Article  CAS  PubMed  Google Scholar 

  25. Kandziora F, Kerschbaumer F, Starker M, Mittlmeier T (2000) Biomechanical assessment of the transoral plate fixation for atlantoaxial instability. Spine 25: 555–1561

    Article  Google Scholar 

  26. Kandziora F, Pflugmacher R, Scholz M, Schnake K, Schröder R, Mittlmeier T (2001) Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study. Spine 26: 1028–1037

    Article  CAS  PubMed  Google Scholar 

  27. Kandziora F, Pflugmacher R, Schäfer J, Duda G, Haas NP, Mittlmeier T (2001) Biomechanical comparison of cervical spine interbody fusion cages. Spine 26: 1850–1857

    Article  CAS  PubMed  Google Scholar 

  28. Kandziora F, Schollmeier G, Scholz M, Schaefer J, Scholz A, Schmidmaier G, Schröder R, Bail H, Duda G, Mittlmeier T, Haas NP (2002) Influence of cage design of interbody fusion in a sheep cervical spine model. J Neurosurg 96: 321–332

    PubMed  Google Scholar 

  29. Kandziora F, Pflugmacher R, Kleemann R, Duda G, Wise DL, Trantolo DJ, Lewandrowski KU (2002) Biomechanical analysis of biodegradable interbody fusion cages augmented with poly(propylene glycol-co-fumaric acid). Spine 27: 1644–1651

    Article  PubMed  Google Scholar 

  30. Kettler A, Wilke HJ, Dietl R, Krammer M, Lumenta C, Claes L (2000) Stabilising effect of posterior lumbar interbody fusion cages before and after cyclic loading. J Neurosurg 92: 87–92

    CAS  PubMed  Google Scholar 

  31. Kulkarni RK, Moore EG, Hegyeli AF, Leonard F (1971) Biodegradable poly(lactic acid) polymers. J Biomed Mater Res 5: 169–181

    CAS  Google Scholar 

  32. Kumar A, Kozak JA, Doherty BJ, Dickson JH (1993) Interspace distraction and graft subsidence after anterior lumbar fusion with femoral strut allograft. Spine 18: 2393–2400

    CAS  PubMed  Google Scholar 

  33. Kumta SM, Spinner R, Leung PC (1992) Absorbable intramedullary implants for hand fractures. Animal experiment and clinical trial. J Bone Joint Surg Br 93: 839–843

    Google Scholar 

  34. Laurencin C, Lane JM (1994) Poly (lactide acid) and poly (glycolid acid): orthopedic surgery applications. In: Brighton C, Frielaender G, Lane MJ (eds) Bone formation and repair. American Academy of Orthopedic Surgeons, Rosemont, pp 325–339

  35. Lowe TG, Coe JD (2002) Resorbable polymer implants in unilateral transforaminal lumbar interbody fusion. J Neurosurg [Suppl 4] 97: 464–467

    Google Scholar 

  36. Majd ME, Vadhva M, Holt RT (1999) Anterior cervical reconstruction using titanium cages with anterior plating. Spine 24: 1604–1610

    Article  CAS  PubMed  Google Scholar 

  37. Majola A, Vainionpaa S, Vihtonen K, Mero M, Vasenius J, Tormala P, Rokkanen P (1991) Absorption, biocompatibility and fixation properties of polylactic acid in bone tissue: an experimental study in rats. Clin Orthop 244: 260–269

    Google Scholar 

  38. Matge G (1998) Anterior interbody fusion with the BAK-cage in cervical spondylosis. Acta Neurochir (Wien) 140: 1–8

    Google Scholar 

  39. Miller RA, Brady JM, Cutright DE (1977) Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios. J Biomed Mater Res 11: 711–719

    CAS  PubMed  Google Scholar 

  40. Munoz FLO, Heras BG de las, Lopez VC, Siguero JJA (1998) Comparison of three techniques of anterior fusion in single-level cervical disc herniation. Eur Spine J 7: 512–516

    Article  PubMed  Google Scholar 

  41. Pflugmacher R, Schleicher P, Gummior S, Turan O, Scholz M, Eindorf T, Haas NP, Kandziora F (submitted) Biomechanical comparison of bioabsorbale cervical spine interbody fusion cages. Spine submitted

  42. Robinson RA (1964) Anterior and posterior cervical spine fusions. Clin Orthop 35: 34–36

    CAS  PubMed  Google Scholar 

  43. Saitoh H, Takata T, Nikai H, Shintani H, Hyon SH, Ikada Y (1994) Effect of polylactic acid on osteoinduction of demineralized bone: preliminary study of the usefulness of polylactic acid as a carrier of bone morphogenetic protein. J Oral Rehabil 21: 431–438

    CAS  PubMed  Google Scholar 

  44. Sandhu HS, Turner S, Kabo M, Kanim LE, Liu D, Nourparvar A, Delamater RB, Dawson EG (1996) Distractive properties of threaded interbody fusion device. An in vivo model. Spine 21: 1201–1210

    Article  CAS  PubMed  Google Scholar 

  45. Toth JM, Estes BT, Wang M, Seim HB 3rd, Scifert JL, Turner AS, Cornwall GB (2002) Evaluation of 70/30 poly (L-lactide-co-D,L-lactide) for use as a resorbable interbody fusion cage. J Neurosurg [Suppl 4] 97: 423–432

  46. Van Dijk M, Tunc DC, Smit TH, Higham P, Burger EH, Wuisman PI (2002) In vitro and in vivo degradation of bioabsorbable PLLA spinal fusion cages. J Biomed Mater Res. 63: 752–759

    Google Scholar 

  47. Van Dijk M, Smit TH, Burger EH, Wuisman PI (2002) Bioabsorbable poly-L-lactic acid cages for lumbar interbody fusion: three-year follow-up radiographic, histologic, and histomorphometric analysis in goats. Spine. 27: 2706–2714

    Google Scholar 

  48. Van Dijk M, Smit TH, Arnoe MF, Burger EH, Wuisman PI (2003) The use of poly-L-lactic acid in lumbar interbody cages: design and biomechanical evaluation in vitro. Eur Spine J. 12: 34–40

    Google Scholar 

  49. Weiner BK, Fraser RD (1998) Spine update lumbar interbody fusion cages. Spine 23: 634–640

    CAS  PubMed  Google Scholar 

  50. Wuisman PI, Van Dijk M, Smit TH (2002) Resorbable cages for spinal fusion: an experimental goat model. J Neurosurg [Suppl 4] 97: 433–439

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pflugmacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pflugmacher, R., Eindorf, T., Scholz, M. et al. Biodegradierbarer Cage. Chirurg 75, 1003–1012 (2004). https://doi.org/10.1007/s00104-004-0884-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-004-0884-y

Schlüsselwörter

Keywords

Navigation