Skip to main content
Log in

Fetale Wundheilung

Aktueller Stand und neue Perspektiven

Fetal wound healing: current status and new perspectives

  • Originalia
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Das Merkmal der fetalen Wundheilung ist die narbenlose Heilung einer Wunde im frühen Gestationsalter. In den letzten 20 Jahren galt das Interesse der Forscher aus den verschiedensten Fachrichtungen den molekularen Regulationsmechanismen, die dem Phänomen der narbenlosen Wundheilung zugrunde liegen. Mit besserem Einblick in die zeitlich genau abgestimmten Abbau- und Synthesereaktionen können zukünftig wichtige Therapieoptionen zur Prävention und Reduktion der Narbenbildung nach chirurgischen Eingriffen und Traumen entwickelt werden. Ziel dieser Arbeit ist es, einen Überblick über die bedeutendsten Arbeiten der letzten 2 Jahrzehnte auf dem Gebiet der fetalen Wundheilung zu geben. Es soll auch auf die—aus dem fetalen Wundheilungsmodell entwickelten—Behandlungsansätze zur Modulation der adulten Narbenbildung eingegangen werden. Die bisher experimentell erzielten Ergebnisse unter Verwendung dieser neuen Therapieoptionen sind äußerst viel versprechend und richtungsweisend und stellen eine enorme Chance für die Chirurgie der Zukunft dar.

Abstract

The characteristic of fetal wound healing is scarless wound repair in early gestation. During the last two decades, intensive research efforts have focused on unraveling the molecular regulations underlying the phenomenon of scarless wound healing. Better understanding of synthesis and degradation will enable us to develop important therapeutic options for the prevention and reduction of scarring. The aim of this article is to present an overview, discuss the most important research works of the last two decades on the field of fetal wound healing, and report current therapeutic developments for the modulation of adult wound repair. Recent experimental results using these new therapeutic approaches are very promising and present great possibilities and chances for future surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1a–d

Literatur

  1. Alaish SM, Yager D, Diegelmann RF, Cohen IK (1994) Biology of fetal wound healing: hyaluronate receptor expression in fetal fibroblasts. J Pediatr Surg 29:1040

    CAS  PubMed  Google Scholar 

  2. Armstrong JR, Ferguson MW (1995) Ontogeny of the skin and transition from scar-free to scarring phenotype during wound healing in the pouch of a marsupial, Monodelphis domestica. Dev Biol 169:242

    Article  CAS  PubMed  Google Scholar 

  3. Beanes SR, Dang C, Soo C et al. (2001) Differential expression of vascular endothelial growth factor in fetal wounds. Wound Repair Regen 9:153

    Google Scholar 

  4. Beanes SR, Dang C, Soo C et al. (2001) Ontogenetic transition in fetal wound extracellular matrix correlates with scar formation. Wound Repair Regen 9:151

    Google Scholar 

  5. Bennet NT, Schultz GS (1993) Growth factors and wound healing: biochemical properties of growth factors and their receptors. Am J Surg 165:728

    CAS  PubMed  Google Scholar 

  6. Bracaglia R, Montemari G, Rotoli M, Petrosino R (1982) Variation in acute phlogistic reaction in the skin of rabbit fetuses. Ann Plast Surg 9:175

    CAS  PubMed  Google Scholar 

  7. Bullen EC, Longaker MT, Updike DL et al. (1995) Tissue inhibitor of metalloproteinases-1 is decreased and activated gelatinases are increased in chronic wounds. J Invest Dermatol 104:236

    CAS  PubMed  Google Scholar 

  8. Burd DA, Longaker MT, Adzick NS, Harrison MR, Ehrlich HP (1990) Fetal wound healing in a large animal model: the deposition of collagen is confirmed. Br J Plastic Surg 43:571

    CAS  Google Scholar 

  9. Burrington J (1971) Wound healing in the fetal lamb. J Pediatr Surg 6:523

    CAS  PubMed  Google Scholar 

  10. Cass DL, Bullard KM, Sylvester KG et al. (1997) Wound size and gestational age modulate scar formation in fetal wound repair. J Pediatr Surg 32:411

    CAS  PubMed  Google Scholar 

  11. Cass DL, Sylvester KG, Yang EY, Crombleholme TM, Adzick NS (1997) Myofibroblast persistence in fetal sheep wounds is associated with scar formation. J Pediatr Surg 32:1017

    CAS  PubMed  Google Scholar 

  12. Chen WY, Grant ME, Schor AM (1989) Differences between adult and foetal fibroblasts in the regulation of hyaluronate synthesis: correltation with migratory activity. J Cell Sci 94:577

    CAS  PubMed  Google Scholar 

  13. Chin GS, Kim WJ, Lee TY et al. (2000) Differential expression of receptor tyrosine kinases and Shc in fetal and adult rat fibroblasts: towards defining scarless versus scarring fibroblast phenotypes. Plast Reconstr Surg 105:972

    CAS  PubMed  Google Scholar 

  14. Chin GS, Lee S, Hsu M et al. (2001) Discoidin domain receptors and their ligand, collagen, are temporally regulated in fetal rat fibroblast in vitro. Plast Reconstr Surg 107:769

    Article  CAS  PubMed  Google Scholar 

  15. Constant JS, Bullard KM, Hunt TK (1997) Increased vascular endothelial growth factor in hypoxic fetal wounds. Surg Forum 48:519

    CAS  Google Scholar 

  16. Dahl L, Hopwood JJ, Laurent UB, Lilja K, Laurent KC (1983) The concentration of hyaluronate in amniotic fluid. Biochem Med 30:280

    CAS  PubMed  Google Scholar 

  17. Dang CM, Beanes SR, Lee H et al. (2003) Scarless fetal wounds are associated with an increased matrix metalloproteinase-to-tissue-derived inhibitor of metalloproteinase ratio. Plast Reconstr Surg 111:2273

    Article  PubMed  Google Scholar 

  18. Dang CM, Beanes SR, Soo C et al. (2001) A high ratio of TGF-ß3 to TGF ß1 expression in wounds is associated with scarless repair. Wound Repair Regen 9:153

    Google Scholar 

  19. Dang CM, Beanes SR, Soo C et al. (2003) Decreased expression of fibroblast and keratinocyte growth factor isoforms and receptors during scarless repair. Plast Reconstr Surg 111:1969

    Article  PubMed  Google Scholar 

  20. DePalma RL, Krummel TM, Durham LA 3rd et al. (1989) Characterization and quantitation of wound matrix in the fetal rabbit. Matrix 9:224

    CAS  PubMed  Google Scholar 

  21. Deprest JA, Papadopulos NA, Decaluw H et al. (1999) Closure techniques for fetoscopic access sites in the rabbit at mid-gestation. Hum Reprod 14:1730

    Article  CAS  PubMed  Google Scholar 

  22. Estes JM, Adzick NS, Harrison MR, Longaker MT, Stern R (1993) Hyaluronate metabolism undergoes an ontogenic transition during fetal development: implications for scar-free wound healing. J Pediatr Surg 28:1227

    CAS  PubMed  Google Scholar 

  23. Estes JM, Vande Berg JS, Adzick NS et al. (1994) Phenotypic and functional features of myofibroblasts in sheepfetal wounds. Differentiation 56:173

    Article  CAS  PubMed  Google Scholar 

  24. Falanga V, Qian SW, Danielpour D et al. (1994) Hypoxia upregulates the synthesis of TGF-β 1 by human dermal fibroblasts. J Invest Dermatol 97:634

    Google Scholar 

  25. Frantz FW, Bettinger DA, Haynes JH et al. (1993) Biology of fetal repair: the presence of bacteria in fetal wounds induces an adult-like healing response. J Pediatr Surg 28:428

    CAS  PubMed  Google Scholar 

  26. Ginsberg MH, Painter RG, Birdwell C, Plow EF (1979) The detection, immunofluorescent localization, and thrombin-induced release of human platelet-associated fibronectin antigen. J Supramol Struct 11:167

    CAS  PubMed  Google Scholar 

  27. Gordon AD, Karmacharya J, Herlyn M (2001) Scarless wound healing induced by adenoviral-mediated overexpression of interleukin-10. Surg Forum 52:568

    CAS  Google Scholar 

  28. Goss, AN (1997) Intra-uterine healing of fetal rat oral mucosal, skin and cartilage wounds. J Oral Pathol 6:35

    Google Scholar 

  29. Harris MC, Mennuti MT, Kline JA, Polin RA (1988) Amniotic fluid fibronectin concentrations with advcancing gestational age. Obstet Gynecol 72:593

    CAS  PubMed  Google Scholar 

  30. Harrison MR, Adzick NS, Flake AW (1993) Congenital diaphragmatic hernia: an unsolved problem. Semin Pediatr Surg 2:109

    CAS  PubMed  Google Scholar 

  31. Haynes JH, Johnson DE, Mast BA et al. (1991) Platelet-derived growth factor induces fetal wound fibrosis. J Pediatr Surg 29:1405

    Article  Google Scholar 

  32. Hofstädter F (1995) Pathologie der Wundheilung. Chirurg 66:174

    PubMed  Google Scholar 

  33. Ihara S, Motobayashi Y, Nagao E, Kistler A (1990) Ontogenetic transition of wound healing pattern in rat skin occurring at the fetal stage. Development 110:671

    CAS  PubMed  Google Scholar 

  34. Jennings RW, Adzick NS, Longaker MT et al. (1991) Ontogeny of fetal sheep polymorphonuclear leukocyte phagocytosis. J Pediatr Surg 26:853

    CAS  PubMed  Google Scholar 

  35. Kennedy CI, Diegelmann RF, Haynes JH, Yager DR (2000) Proinflammatory cytokines differentially regulate hyaluronan synthase isoforms in fetal and adult fibroblasts. J Pediatr Surg 35:874

    Article  CAS  PubMed  Google Scholar 

  36. Krummel TM, Nelson JM, Diegelmann RF et al. (1987) Fetal response to injury in the rabbit. J Pediatr Surg 22:640

    CAS  PubMed  Google Scholar 

  37. Krummel TM, Michna BA, Thomas BL et al. (1988) TGFß in fetal wound model. J Pediatr Surg 23 :647

    Google Scholar 

  38. Kumta S, Ritz M, Hurley JV et al. (1994) Acute inflammation in foetal and adult sheep: the response to subcutaneous injection of turpentine and carrageenan. Br J Plast Surg 47:360

    CAS  PubMed  Google Scholar 

  39. Lane AL (1986) Human fetal skin development. Pediatr Dermatol 3:487

    CAS  PubMed  Google Scholar 

  40. Levy AP, Levy NS, Wegner S, Goldberg MA (1995) Transcriptional regulation of the rate of the vascular endothelial growth factor gene by hypoxia. J Biol Chem 270:13333

    CAS  PubMed  Google Scholar 

  41. Liechty KW, Adzick NS, Crombleholme TM (2000) Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine 12:671

    Article  CAS  PubMed  Google Scholar 

  42. Liechty KW, Kim HB, Adzick NS, Crombleholme TM (2000) Fetal wound repair results in scar formation in interleukin-10-deficient mice in a syngenetic murine model of scarless fetal wound repair. J Pediatr Surg 35:866

    Article  CAS  PubMed  Google Scholar 

  43. Lin KY, Postnick JC, al-Qattan MM, Vajsar J, Becker LE (1994) Fetal nerve healing: an experimental study. Plast Reconstr Surg 15:811

    Google Scholar 

  44. Lin RY, Sullivan KM, Argenta PA, Lorenz HP, Adzick NS (1994) Scarless human fetal skin repair is intrinsic to the fetal fibroblast and occurs in the absence of an inflammatory response: in situ hybridization and immunohistochemical studies. Wound Repair Regener 2:297

    Article  Google Scholar 

  45. Longaker MT, Chiu ES, Adzick NS et al. (1991) Studies in fetal wound healing. V. A Prolonged presence of hyluronic acid characterizes fetal wound fluid. Ann Surg 213:292

    CAS  PubMed  Google Scholar 

  46. Longaker MT, Moelleken BR, Cheng JC et al. (1992) Fetal fracture healing in a lamb model. Plast Reconstr Surg 90:161

    CAS  PubMed  Google Scholar 

  47. Longaker MT, Whitby DJ, Ferguson MW et al. (1989) Studies in fetal wound healing: III. Early deposition of fibronectin distinguishes fetal from adult wound healing. J Pediatr Surg 24:799

    CAS  PubMed  Google Scholar 

  48. Longaker MT, Whitby DJ, Ferguson MW et al. (1994) Adult skin wounds in the fetal environment heal with scar formation. Ann Surg 219:65

    CAS  PubMed  Google Scholar 

  49. Longaker MT, Whitby DJ, Jennings RW et al. (1991) Fetal diaphragmatic wounds heal with scar formation. J Surg Res 50:375

    CAS  PubMed  Google Scholar 

  50. Lorenz HP, Adzick NS (1993) Scarless skin wound repair in the fetus. West J Med 159:350

    CAS  PubMed  Google Scholar 

  51. Lorenz HP, Longaker MT, Perkocha LA et al. (1992) Scarless wound repair: a human fetal skin model. Development 114:253

    CAS  PubMed  Google Scholar 

  52. Lorenz HP, Whitby DJ, Longaker MT, Adzick NS (1993) Fetal wound healing: The ontogeny of scar formation in the non-primate. Ann Surg 21:391

    Google Scholar 

  53. Lou G, Hofmann C, Bronckers AL et al. (1995) BMP-7 is an inducer of nephrogenesis and is also required fo eye development and skeletal patterning. Genes Dev 9:2808

    CAS  PubMed  Google Scholar 

  54. Mackie EJ, Tucker RP, Halfter W, Chiquet-Ehrismann R, Epperlein HH (1988) The distribution of tenascin coincides with pathways of neural crest cell migration. Development 102:237

    CAS  PubMed  Google Scholar 

  55. Mast BA, Albanese CT, Kapadia S (1998) Tissue repair in the fetal intestinal tract occurs with adhesions, fibrosis, and neovascularization. Ann Plastic Surg 41:140

    CAS  Google Scholar 

  56. Merkel JR, DiPaolo BR, Hallock GG, Rice DC (1988) Type I and type III collagen content of healing wounds in fetal and adult rats. Proc Soc Exp Biol Med 187:493

    CAS  PubMed  Google Scholar 

  57. Meuli M, Lorenz HP, Hedrick MH et al. (1995) Scar formation in the fetal alimentary tract. J Pediatr Surg 30:39

    PubMed  Google Scholar 

  58. Müller DF, Borelli C, Wagner C, Papadopulos N, Biemer E (2003) Differentielle Genexpressionsanalysen bei hypertrophen Narben und Keloiden. Präsentiert auf der Jahrestagung der Vereinigung Deutscher Plastischer Chirurgen in Freiburg, den 1.-5. Oktober 2003

  59. Mulvihill SJ, Stone MM, Fonkalsrud EW (1986) Trophic effects of amniotic fluid on fetal gastrointestinal development. J Surg Res 40:291

    CAS  PubMed  Google Scholar 

  60. Nanney LB (1990) Epidermal and dermal effects of epidermal growth factor during wound repair. J Invest Dermatol 94:624

    CAS  PubMed  Google Scholar 

  61. Papadopoulos MA, Jannowitz C, Christou P et al. (2002) Fetal surgical treatment of cleft-lip and palate: A real possibility or a utopia? Hell Plast Surg 1:191

    Google Scholar 

  62. Papadopoulos MA, Papadopulos NA, Jannowitz C et al. (2003) Drei-dimensionale computertomographische Auswertung des Mittelgesichtswachstums nach intrauteriner Wiederherstellung von chirurgisch erzeugten Oberkieferdefekten am Schaffetus. Chir Forum 32:17

    Google Scholar 

  63. Papadopulos NA, Deprest JA, Dumitrascu I et al. (2000) Endoskopische fetale Chirurgie: eine neue Perspektive in der fetalen Therapie? Sozialpaediatrie 22:14

    Google Scholar 

  64. Papadopulos NA, Dumitrascu I, Ordonez JL et al. (1999) Fetoscopy in the pregnant rabbit at midgestation. Fetal Diagn Ther 14:118

    Article  CAS  PubMed  Google Scholar 

  65. Papadopulos NA, Klotz S, Raith A et al. (2003) Chirurgische Verschlussmethoden von fetoskopisch erzeugten Membrandefekten am mittel-trächtigen Kaninchenmodell. Geburtsh Frauenheilkd 63:651

    Google Scholar 

  66. Papadopulos NA, Papadopoulos MA (2004) Cleft, lip and palate. In: Isfer EV (ed) Fetal medicine—pre-natal diagnosis and management. Revinter, Sao Paulo, Brasilien (in Druck)

  67. Papadopulos NA, Papadopoulos MA, Zeilhofer HF et al. (2004) Intrauterine autogenous fetal bone transplantation for the repair of cleft-like defects in the midgestational sheep model. J Craniomaxillofac Surg (in Druck)

  68. Papadopulos NA, Van Ballaer PP, Ordonez JL et al. (1998) Fetal membrane closure techniques after hysteramniotomy in the midgestational rabbit model. Am J Obstet Gynecol 178:938

    CAS  PubMed  Google Scholar 

  69. Papadopulos NA, Zeilhofer HF, Papadopoulos MA et al. (2003) Tierexperimentelle endoskopische intrauterine Chirurgie bei kraniofazialen Fehlbildungen am Beispiel der Lippen-Kiefer-Gaumen-Spalten. Mund Kiefer Gesichtschir 7:70

    CAS  PubMed  Google Scholar 

  70. Paralkar VM, Weeks BS, Yu YM, Kleinman HK, Reddi AH (1992) Recombinant human bone morphogenetic protein 2B stimulates PC 12 cell differentiation, potentiation and binding to type IV collagen. J Cell Biol 119:1721

    CAS  PubMed  Google Scholar 

  71. Parks WC (1999) Matrix metalloproteinases in repair. Wound Repair Regen 7:423

    Article  CAS  Google Scholar 

  72. Peled ZM, Phelps ED, Updike DL et al. (2002) Matrix metalloproteinases and the ontogeny of scarless repair: the other side of the wound healing balance. Plast Reconstr Surg 110:801

    Google Scholar 

  73. Rittenberg T, Longaker MT, Adzick NS, Ehrlich HP (1991) Sheep amniotic fluid has a protein factor which stimulates human fibroblast populated collagen lattice contraction. J Cell Physiol 149:444

    CAS  PubMed  Google Scholar 

  74. Rowlatt U (1979) Intrauterine wound healing in a 20-week human fetus. Virchows Arch A Pathol Anat Histol 381:353

    CAS  PubMed  Google Scholar 

  75. Schor SL, Schor AM, Rushton G, Smith L (1985) Adult, foetal and transformed fibroblasts display different migratory phenotypes on collagen gels: evidence for an isoformic transiton during foetal development. J Cell Sci 73:221

    CAS  PubMed  Google Scholar 

  76. Schwartz LW, Osburn BI (1974) An ontogenic study of the acute inflammatory reaction in the fetal rhesus monkey: I. Cellular response to bacterial and nonbacterial irritants. Lab Invest 31:441

    CAS  PubMed  Google Scholar 

  77. Scott JE, Hughes EW (1986) Proteoglycan-collagen relationships in developing chick and bovine tendons: Influence of the physiologic environment. Connect Tissue Res 14:267

    CAS  PubMed  Google Scholar 

  78. Shah M, Foreman DM, Ferguson MW (1992) Control of scar in adult wounds by neutralizing antibody to transforming growth factor β. Lancet 339:213

    Article  CAS  PubMed  Google Scholar 

  79. Shah M, Foreman DM, Ferguson MW (1995) Neutralisation of TGF ß1 and TGF ß2 or exogenous addition of TGF β3 to cutanous rat wounds reduces scarring. J Cell Sci 108:985

    CAS  PubMed  Google Scholar 

  80. Somasundaram K, Prathap K (1972) The effect of exclusion of amniotic fluid on intra-uterine healing of skin wounds in rabbit foetuses. J Pathol 107:127–30

    CAS  PubMed  Google Scholar 

  81. Stelnicki EJ, Arbeit J, Cass DL et al. (1998) Modulation of the human homeobox genes PRX-2d and HOX B13 in scarless fetal wounds. J Invest Dermatol 111:57

    Google Scholar 

  82. Stelnicki EJ, Komuves LG, Kwong AO et al. (1998) HOX homeobox genes exhibit spatial and temporal changes in expression during human skin development. J Invest Dermatol 110:110

    Google Scholar 

  83. Stelnicki EJ, Longaker MT, Holmes D et al. (1998) Bone Morphogenic Protein-2 induces scar formation and skin maturation in the second trimester fetus. Plast Reconstr Surg 101:12

    CAS  PubMed  Google Scholar 

  84. Thesleff I, Nieminen P (1996) Tooth morphogenesis and cell differentiation. Curr Opin Cell Biol 8:844

    CAS  PubMed  Google Scholar 

  85. Thomas BL, Krummel TM, Melang M (1988) Collagen synthesis and type expression by fetal fibroblasts in vitro. Surg Forum 39:642

    Google Scholar 

  86. Tonnesen MG, Jenkins D jr, Siegal SL et al. (1985) Expression of fibronectin, laminin, and factor VII-related antigen during development of the human cutaneous microvasculature. J Invest Dermatol 85:564

    CAS  PubMed  Google Scholar 

  87. Whitby DJ, Longaker MT, Harrison MR, Adzick NS, Ferguson MW (1991) Rapid epithelisation of fetal wounds is associated with the early deposition of tenascin. J Cell Sci 99:583

    PubMed  Google Scholar 

  88. White P, Thomas DW, Fong S et al. (2003) Deletion of the Homeobox gene Prx-2 affects fetal but not adult fibroblast wound healing responses. J Invest Dermatol 120:135

    Article  CAS  PubMed  Google Scholar 

  89. Yager JS, Hugo NE, Ehrlich HP (1998) Inhibition of fibroblast-populated collagen lattice contraction by an albumin-bound lipid fraction in human amniotic fluid. Plast Reconstr Surg 101:6

    CAS  PubMed  Google Scholar 

  90. Zou H, Niswander L (1996) Requirement for BMP signaling in interdigital apoptosis and scar formation. Science 272:738

    CAS  PubMed  Google Scholar 

  91. Zucker MB, Mosesson MW, Broekman MJ, Kaplan KL (1979) Release of platelet fibronectin (cold-insoluble globulin) from alpha granules induced by thrombin or collagen: lack of requirement for plasma fibronectin in ADP-induced platelet aggregation. Blood 54:8

    CAS  PubMed  Google Scholar 

Download references

Danksagung

Die Autoren danken allen Mitarbeitern der Arbeitsgruppe für „Intrauterine Chirurgie“ am Klinikum rechts der Isar, München (R. Bergmeyr, P. Boettcher, E. Brendel, T. Brill, W. Erhardt, R. Hertel, S. Klotz, M. Leucz, B. Matzen, V. Pohlheimer, A. Raith und R. Sader) für die Durchführung aktueller und zukünftiger Projekte und für die kritische Diskussion dieses Artikels. Wir danken auch unseren Industriepartnern (Auto Suture Germany GmbH, Baxter Germany—Immuno GmbH, Ethicon GmbH, Karl Storz Endoskope GmbH & Co., Ossacur AG, W. L. Gore & Associates GmbH) für ihre Hilfe, diese Projekte überhaupt möglich werden zu lassen.

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Papadopulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huhn, E.A., Jannowitz, C., Boos, H. et al. Fetale Wundheilung. Chirurg 75, 498–507 (2004). https://doi.org/10.1007/s00104-004-0878-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-004-0878-9

Schlüsselwörter

Keywords

Navigation