Skip to main content
Log in

Aktuelles Konzept zur mikrobiologischen Sicherheit von zellbasierten Arzneimitteln

Current concept for the microbiological safety of cell-based medicinal products

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Die Gewährleistung der mikrobiologischen Sicherheit bei Arzneimitteln für neuartige Therapien stellt nach wie vor für die Hersteller eine große Herausforderung dar. Besonders bei zellbasierten Arzneimitteln bestehen grundsätzliche Probleme, zu denen die Sterilität der Ausgangsmaterialien, die kurze Haltbarkeit der Endprodukte und die Wahl geeigneter mikrobiologischer Kontrollmethoden gehören. Im Unterschied zu den klassischen Arzneimitteln müssen bei neuartigen Therapeutika sehr viel mehr mögliche Risiken bewertet und zum erwarteten Nutzen ins Verhältnis gesetzt werden. Je nach Ausgangsmaterial ist auch das Vorkommen von Mikroorganismen mit speziellen Nährstoffansprüchen zu berücksichtigen. Diese können mit konventionellen Testmethoden nicht nachgewiesen werden, sind beim Empfänger des Präparates aber oft vermehrungsfähig. Dies sind in erster Linie Mykoplasmen, für die spezifische Tests vorgeschrieben sind. Aber auch Mykobakterien und weitere mögliche Kontaminanten müssen, je nach Herkunft und Verarbeitungsschritten des biologischen Materials, in Betracht gezogen und durch entsprechende Kontrollen ausgeschlossen werden. Neben der Verkürzung der Dauer bis zu einem zuverlässigen Ergebnis vor der Anwendung eines Präparates, können alternative mikrobiologische Methoden (z. B. NAT, Durchflusszytometrie) dazu dienen, solche konventionell nicht erfassbaren Mikroorganismen nachzuweisen.

Abstract

Ensuring microbiological safety in advanced-therapy medicinal products is still a big challenge for manufacturers. There are fundamental problems, especially in cell-based medicinal products, regarding sterility of source materials, short shelf-life of final products, and the selection of suitable microbiological methods. Different from classical medicinal products, there is the need to evaluate a large number of possible risks and to calculate the risk-benefit balance. Depending on the source material, the presence of micro-organisms with specific growth requirements has to be considered. They cannot be detected by conventional testing methods, but may replicate after the application of the preparation in the recipient. Mycoplasmas are the primary representatives of these contaminants and specific testing procedures are required. Additionally, depending on the source and processing of the biological material, specific testing methods for mycobacteria and other contaminants should be included. Alternative microbiological methods (e.g. NAT, flow cytometry) should be applied in order to reduce the time to detection and to provide reliable results before application of a preparation, but should be also assessed for their possible use for the detection of conventionally undetectable micro-organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Montag T, Störmer M, Schurig U et al (2010) Probleme der mikrobiellen Sicherheit bei neuartigen Therapien. Die Quadratur des Kreises. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 53(1):45–51

    Article  Google Scholar 

  2. Guideline on human cell-based medicinal products, EMEA/CHMP /410869/2006, 2008

  3. European Pharmacopoeia, Chapter 2.6.27 Microbiological examination of cellular products

  4. European Pharmacopoeia 8th Edition - Supplement 8.4 (2015), 0520 Parenteral preparations

  5. European Pharmacopoeia, Chapter 2.6.1 Sterility

  6. Almeida ID, Schmalfuss T, Röhsig LM, Goldani LZ (2012) Autologous transplant: microbial contamination of hematopoietic stem cell products. Braz J Infect Dis 16(4):345–350

    Article  PubMed  Google Scholar 

  7. Lowder JN, Whelton P (2003) Microbial contamination of cellular products for hematolymphoid transplantation therapy: assessment of the problem and strategies to minimize the clinical impact. Cytotherapy 5(5):377–390

    Article  CAS  PubMed  Google Scholar 

  8. Padley DJ, Greiner CW, Heddlesten TL, Hopkins MK, Maas ML, Gastineau DA (2003) Endogenous microbial contamination of cultured autologous preparations in trials of cancer immunotherapy. Cytotherapy 5(2):147–152

    Article  CAS  PubMed  Google Scholar 

  9. Commission Directive 2006/17/EC of 8 February 2006 implementing Directive 2004/23/EC of the European Parliament and of the Council as regards certain technical requirements for the donation, procurement and testing of human tissues and cells

  10. European Pharmacopoeia, Chapter 5.1.1 Methods of preparation of sterile products

  11. Directive 2004/23/EC of the European Parliament and of the Council of 31 March 2004 on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells

  12. Note for guidance on the quality, preclinical and clinical aspects of gene transfer medicinal products (CPMP/BWP/3088/99) 2001

  13. Bekanntmachung der Richtlinien zur Gewinnung von Blut und Blutbestandteilen und zur Anwendung von Blutprodukten (Hämotherapie) gemäß §§ 12 und 18 des Transfusionsgesetzes (TFG) vom 4. Mai 2010

  14. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J (2014) The placenta harbors a unique microbiome. Sci Transl Med 6(237):237ra65

    Article  PubMed  Google Scholar 

  15. Adds PJ, Hunt C, Hartley S (2001) Bacterial contamination of amniotic membrane. Br J Ophthalmol 85(2):228–230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. EudraLex. The rules governing medicinal products in the European Union, Bd. 4, EU guidelines for GMP for medicinal products for human and veterinary use

  17. EU Guideline for GMP Annex 12: The use of ionising radiation in the manufacture of medicinal products

  18. European Pharmacopoeia, Chapter 2.6.12 Microbiological examination of non-sterile products: microbial enumeration test

  19. European Pharmacopoeia, Chapter 2.6.13 Microbiological examination of non-sterile products: test for specified micro-organisms

  20. Biomérieux (2015) Packungsbeilagen. http://www.biomerieux.de/servlet/srt/bio/germany/dynPage?node=Technische_Bibliothek_2

  21. BD (2015) Packungsbeilagen. http://www.bd.com/ds/technicalCenter/inserts/pkgInserts.asp#PF1. Zugegriffen: 03. Mai 2015

  22. European Pharmacopoeia, 2323 Human haematopoietic stem cells

  23. European Pharmacopoeia, Chapter 5.14. Gene transfer medicinal products for human use

  24. Stenhouse MA, Milner LV (1992) A survey of cold-growing Gram-negative organisms isolated from the skin of prospective blood donors. Transfus Med 2(3):235–237

    Article  CAS  PubMed  Google Scholar 

  25. Bensch K, Braun U, Groenewald JZ, Crous PW (2012) The genus Cladosporium. Stud Mycol 72(1):1–401

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Störmer M, Kleesiek K, Dreier J (2008) Propionibacterium acnes lacks the capability to proliferate in platelet concentrates. Vox Sang 94(3):193–201

    Article  PubMed  Google Scholar 

  27. European Pharmacopoeia, Chapter 5.1.6. Alternative methods for control of microbiological quality

  28. PDA Technical Report No. 33, Revised 2013 (TR 33) Evaluation, Validation and Implementation of Alternative and Rapid Microbiological Methods

  29. Karo O, Wahl A, Nicol SB et al (2008) Bacteria detection by flow cytometry. Clin Chem Lab Med 46(7):947–953

    Article  CAS  PubMed  Google Scholar 

  30. Karo O, Kraft K, Schurig U et al (2014) Evaluation of the BactiFlow flow cytometer for rapid microbiological control of cellular preparations. (Poster), 47th Congress of the DGTI, Dresden

  31. Dreier J, Vollmer T, Kleesiek K (2009) Novel flow cytometry-based screening for bacterial contamination of donor platelet preparations compared with other rapid screening methods. Clin Chem 55(8):1492–1502

    Article  CAS  PubMed  Google Scholar 

  32. Müller B, Walther-Wenke G, Kalus M et al (2015) Routine bacterial screening of platelet concentrates by flow cytometry and its impact on product safety and supply. Vox Sang 108(3):209–218

    Article  PubMed  Google Scholar 

  33. European Pharmacopoeia, Chapter 2.6.7. Mycoplasmas

  34. Störmer M, Wood EM, Schurig U et al (2014) Bacterial safety of cell-based therapeutic preparations, focusing on haematopoietic progenitor cells. Vox Sang 106(4):285–296

    Article  PubMed  Google Scholar 

  35. Wood TK, Knabel SJ, Kwan BW (2013) Bacterial persister cell formation and dormancy. Appl Environ Microbiol 79(23):7116–7121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochemistry (Mosc) 70(2):267–274

    Article  CAS  Google Scholar 

  37. Rottem S, Barile MF (1993) Beware of mycoplasma. Trends Biotechnol 11(4):143–151

    Article  CAS  PubMed  Google Scholar 

  38. Rottem S, Nechama SK, Kornspan JD (2012) Contamination of tissue cultures by mycoplasma. In: Luca Ceccherini-Nelli, Barbara Matteoli (Hrsg) Biomedical Tissue Culture. InTech, Rijeka, S 35–58

  39. Gong M, Meng L, Jiang B et al (2008) p37 from Mycoplasma hyorhinis promotes cancer cell invasiveness and metastasis through activation of MMP-2 and followed by phosphorylation of EGFR. Mol Cancer Ther 7(3):530–537

    Article  CAS  PubMed  Google Scholar 

  40. Namiki K, Goodison S, Porvasnik S et al (2009) Persistent exposure to Mycoplasma induces malignant transformation of human prostate cells. PLoS One 4(9):e6872

    Article  PubMed Central  PubMed  Google Scholar 

  41. Foley NM, Wang J, Redmond HP, Wang JH (2015) Current knowledge and future directions of TLR and NOD signaling in sepsis. Mil Med Res 2:1

    Article  PubMed Central  PubMed  Google Scholar 

  42. Hasiwa N, Daneshian M, Bruegger P et al (2013) Evidence for the detection of non-endotoxin pyrogens by the whole blood monocyte activation test. ALTEX 30(2):169–208

    Article  PubMed  Google Scholar 

  43. European Pharmacopoeia, Chapter 2.6.14 Bacterial Endotoxins

  44. European Pharmacopoeia, Chapter 5.1.10 Guidelines for using the test for bacterial endotoxins

  45. Hartung T (2015) The human whole blood pyrogen test – lessons learned in twenty years. ALTEX 32(2):79–100

    Article  PubMed  Google Scholar 

Download references

Danksagungen

Die Autoren bedanken sich insbesondere bei R. Beshir, J. Brachert, A. Schneider, B. Becker, B. Löschner für den technischen Support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utta Schurig.

Ethics declarations

Interessenkonflikt

U. Schurig, J. O. Karo, U. Sickert, E-Spindler-Raffel, L. Häckel, I. Spreitzer, I. Bekeredjian-Ding geben an, dass kein Interessenkonflikt besteht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schurig, U., Karo, JO., Sicker, U. et al. Aktuelles Konzept zur mikrobiologischen Sicherheit von zellbasierten Arzneimitteln. Bundesgesundheitsbl. 58, 1225–1232 (2015). https://doi.org/10.1007/s00103-015-2237-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-015-2237-z

Schlüsselwörter

Keywords

Navigation