Skip to main content

Advertisement

Log in

Stechmücken als Überträger exotischer Krankheitserreger in Deutschland

Mosquitoes as vectors for exotic pathogens in Germany

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Infolge der immer ausgeprägteren Globalisierung im internationalen Warenhandel und der hohen Reisetätigkeit der Bevölkerung gewinnen exotische Krankheitserreger, die durch Stechmücken übertragen werden, in Europa zunehmend an Bedeutung. In Deutschland kommen etwa 50 verschiedene Stechmückenarten vor, von denen etliche Vektorkompetenz für Pathogene besitzen. So wurden in den letzten Jahren bereits verschiedene zoonotische Arboviren mit humanpathogener Bedeutung in Stechmücken aus Deutschland nachgewiesen, darunter Usutu-, Sindbis- und Batai-Viren. Auch Filarien wie der Hundehautwurm Dirofilaria repens wurden wiederholt in Stechmücken aus Brandenburg gefunden. Mit dem Auftreten weiterer Erreger, insbesondere dem West-Nil-Virus, muss in absehbarer Zeit in Deutschland gerechnet werden, da es bereits in den Nachbarländern Frankreich, Österreich und Tschechien zirkuliert. Die Übertragung exotischer Arboviren könnte zusätzlich unterstützt werden durch das verstärkte Vorkommen neuer sog. invasiver Stechmückenarten wie dem Japanischen Buschmoskito Ochlerotatus japonicus oder der Asiatischen Tigermücke Aedes albopictus, die hohe Vektorkompetenz für verschiedene Pathogene besitzen und gleichzeitig den Menschen als bevorzugte Blutquelle nutzen. Um diesen Entwicklungen zu begegnen und Risikoabschätzungen vornehmen zu können, wurden in den vergangenen Jahren in Deutschland verschiedene Projekte zur Erfassung von Stechmücken und ihrer Pathogene initiiert. Gleichzeitig müssen Bekämpfungsstrategien und Handlungsanweisungen erarbeitet werden, um möglichen Vektor-assoziierten Epidemien frühzeitig und effizient entgegenwirken zu können.

Abstract

As a result of intensified globalization of international trade and of substantial travel activities, mosquito-borne exotic pathogens are becoming an increasing threat for Europe. In Germany some 50 different mosquito species are known, several of which have vector competence for pathogens. During the last few years a number of zoonotic arboviruses that are pathogenic for humans have been isolated from mosquitoes in Germany including Usutu, Sindbis and Batai viruses. In addition, filarial worms, such as Dirofilaria repens have been repeatedly detected in mosquitoes from the federal state of Brandenburg. Other pathogens, in particular West Nile virus, are expected to emerge sooner or later in Germany as the virus is already circulating in neighboring countries, e.g. France, Austria and the Czech Republic. In upcoming years the risk for arbovirus transmission might increase in Germany due to increased occurrence of new so-called “invasive” mosquito species, such as the Asian bush mosquito Ochlerotatus japonicus or the Asian tiger mosquito Aedes albopictus. These invasive species are characterized by high vector competence for a broad range of pathogens and a preference for human blood meals. For risk assessment, a number of mosquito and pathogen surveillance projects have been initiated in Germany during the last few years; however, mosquito control strategies and plans of action have to be developed and put into place to allow early and efficient action against possible vector-borne epidemics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Angelini R, Finarelli AC, Angelini P et al (2007) An outbreak of chikungunya fever in the province of Ravenna, Italy. Euro Surveill 12:E070906.1

    PubMed  Google Scholar 

  2. Danis K, Papa A, Theocharopoulos G et al (2011) Outbreak of West Nile virus infection in Greece 2010. Emerg Infect Dis 17:1868–1872

    Article  PubMed Central  PubMed  Google Scholar 

  3. Barzon L, Pacenti M, Cusinato R et al (2011) Human cases of West Nile virus infection in north-eastern Italy, 15 June to 15 November 2010. Euro Surveill 16(33). doi:pii: 19949

  4. Sirbu A, Ceianu CS, Panculescu-Gatej RI et al (2011) Outbreak of West Nile virus infection in humans, Romania, July to October 2010. Euro Surveill 16. doi:pii: 19762

  5. Tomasello D, Schlagenhauf P (2013) Chikungunya and dengue autochthonous cases in Europe, 2007–2012. Travel Med Infect Dis pii: S1477-8939(13)00128-2

    Google Scholar 

  6. Schmidt-Chanasit J, Haditsch M, Schoneberg I et al (2010) Dengue virus infection in a traveller returning from Croatia to Germany. Euro Surveill 15(40). doi:pii: 19677

  7. Danis K, Baka A, Lenglet A et al (2011) Autochthonous Plasmodium vivax malaria in Greece 2011. Euro Surveill 16(42). doi:pii: 19993

  8. VBORNET (2013) Exotic Mosquitoes-Distribution Maps. http://www.ecdc.europa.eu/en/activities/diseaseprogrammes/emerging_and_vector_borne_diseases/Pages/VBORNET_maps.aspx

  9. Huber K, Pluskota B, Jöst A et al (2012) Status of the invasive species Aedes japonicus japonicus (Diptera: Culicidae) in southwest Germany in 2011. J Vector Ecol 37:462–465

    Article  PubMed  Google Scholar 

  10. Werner D, Kampen H (2013) The further spread of Aedes japonicus japonicus (Diptera, Culicidae) towards northern Germany. Parasitol Res. doi:10.1007/s00436-013-3564-3

  11. Adhami J, Reiter P (1998) Introduction and establishment of Aedes (Stegomyia) albopictus Skuse (Diptera: Culicidae) in Albania. J Am Mosq Control Assoc 14:340–343

    PubMed  CAS  Google Scholar 

  12. Pluskota B, Storch V, Braunbeck T et al (2008) First record of Stegomyia albopicta (Skuse) Diptera: Culicidae) in Germany. Eur Mosq Bull 17:4

    Google Scholar 

  13. Kampen H, Kronfeld M, Zielke D et al (2012) Further specimens of the Asian tiger mosquito Aedes albopictus (Diptera, Culicidae) trapped in southwest Germany. Parasitol Res 112:905–907

    Article  PubMed  Google Scholar 

  14. Becker N, Geier M, Balczun C et al (2013) Repeated introduction of Aedes albopictus into Germany, July to October 2012. Parasitol Res 112:1787–1790

    Article  PubMed  Google Scholar 

  15. Thomas SM, Beierkuhnlein C (2013) Predicting ectotherm disease vector spread – benefits from multidisciplinary approaches and directions forward. Naturwissenschaften 100:395–405

    Article  PubMed  CAS  Google Scholar 

  16. Fischer D, Thomas SM, Niemitz F et al (2011) Projection of climatic suitability for Aedes albopictus Skuse (Culicidae) in Europe under climate change conditions. Glob Planet Change 78:54–64

    Article  Google Scholar 

  17. Thomas SM, Obermayr U, Fischer D et al (2012) Low-temperature threshold for egg survival of a post-diapause and non-diapause European aedine strain, Aedes albopictus (Diptera: Culicidae). Parasit Vectors 5(100). doi:10.1186/1756-3305-5-100

  18. Jöst H, Bialonski A, Storch V et al (2010) Isolation and phylogenetic analysis of Sindbis viruses from mosquitoes in Germany. J Clin Microbiol 48:1900–1903

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Jöst H, Bialonski A, Maus D et al (2011) Isolation of Usutu virus in Germany. Am J Trop Med Hyg 85:551–553

    Article  PubMed Central  PubMed  Google Scholar 

  20. Allering L, Jöst H, Emmerich P et al (2012) Detection of Usutu virus infection in a healthy blood donor from south-west Germany, 2012. Euro Surveill 17(50)

  21. Mückenatlas. http://www.mueckenatlas.de

  22. McIntosh BM (1985) Usutu (SA Ar 1776), nouvel arbovirus du groupe B. Int Catalogue Arboviruses 3:1059–1060

    Google Scholar 

  23. Bosch S, Schmidt-Chanasit J, Fiedler W (2012) Das Usutu-Virus als Ursache von Massensterben bei Amseln Turdus merula und anderen Vogelarten in Europa: Erfahrungen aus fünf Ausbrüchen zwischen 2001 und 2011. Vogelwarte 50:109–122

    Google Scholar 

  24. Weissenböck H, Bakonyi T, Rossi G et al (2013) Usutu virus, Italy, 1996. Emerg Infect Dis 19:274–277

    Article  PubMed Central  PubMed  Google Scholar 

  25. Becker N, Jöst H, Ziegler U et al (2012) Epizootic emergence of Usutu virus in wild and captive birds in Germany. PLoS One 7:e32604

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Taylor RM, Hurlbut HS, Work TH et al (1955) Sindbis virus: a newly recognized arthropodtransmitted virus. Am J Trop Med Hyg 4:844–862

    PubMed  CAS  Google Scholar 

  27. Jöst H, Bürck-Kammerer S, Hütter G et al (2011) Medical importance of Sindbis virus in south-west Germany. J Clin Virol 52:278–279

    Article  PubMed  Google Scholar 

  28. Spieckermann D, Ackermann R (1972) Isolation of viruses belonging to the California-encephalitis grou group from mosquitoes in Northern Bavaria. Zentralbl Bakteriol Orig A 221:283–295

    PubMed  CAS  Google Scholar 

  29. Jöst H, Bialonski A, Schmetz C et al (2011) Isolation and phylogenetic analysis of Batai virus, Germany. Am J Trop Med Hyg 84:241–243

    Article  PubMed Central  PubMed  Google Scholar 

  30. Bardos V, Danielova V (1959) The Tahyna virus – a virus isolated from mosquitoes in Czechoslovakia. J Hyg Epidemiol Microbiol Immunol 3:264–276

    PubMed  CAS  Google Scholar 

  31. Schmidt-Chanasit J, Schmiedel S, Fleischer B, Burchard GD (2012) Viruses acquired abroad: what does the primary care physician need to know? Dtsch Arztebl Int 109(41):681–691

    PubMed Central  PubMed  Google Scholar 

  32. Smithburn KC, Hughes TP, Burke AW, Paul JH (1940) A neurotropic virus isolated from the blood of a native of uganda. Am J Trop Med 20:471–492

    Google Scholar 

  33. Kilpatrick AM (2011) Globalization, land use, and the invasion of West Nile virus. Science 334:323–327

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Ziegler U, Seidowski D, Angenvoort J et al (2012) Monitoring of West Nile virus infections in Germany. Zoonoses Public Health 59(Suppl 2):95–101

    Article  PubMed  Google Scholar 

  35. Timmermann U, Becker N (2010) Mosquito-borne West Nile virus (WNV) surveillance in the Upper Rhine Valley, Germany. J Vector Ecol 35:140–143

    Article  PubMed  Google Scholar 

  36. Seidowski D, Ziegler U, Rönn JA von et al (2010) West Nile virus monitoring of migratory and resident birds in Germany. Vector Borne Zoonotic Dis 10:639–647

    Article  PubMed  Google Scholar 

  37. Schultze-Amberger J, Emmerich P, Günther S, Schmidt-Chanasit J (2012) West Nile virus meningoencephalitis imported into Germany. Emerg Infect Dis 18:1698–1700

    Article  PubMed Central  PubMed  Google Scholar 

  38. Gabriel M, Emmerich P, Frank C et al (2013) Increase in West Nile virus infections imported to Germany in 2012. J Clin Virol 58:587–589

    Article  PubMed  Google Scholar 

  39. Czajka C, Becker N, Jöst H et al (2014) Stable transmission of Dirofilaria repens nematodes, Northern Germany. Emerg Infect Dis 20:328–330

    Article  PubMed  Google Scholar 

  40. Genchi C, Kramer LH, Rivasi F (2011) Dirofilarial infection in Europe. Vector Borne Zoonotic Dis 11:1307–1317

    Article  PubMed  Google Scholar 

  41. Simón F, Siles-Lucas M, Morchón R et al (2011) Human and animal dirofilariasis: the emergence of a zoonotic mosaic. Clin Microbiol Rev 25:507–544

    Article  Google Scholar 

  42. Poppert S, Hodapp M, Krueger A et al (2009) Dirofilaria repens infection and concomitant meningoencephalitis. Emerg Infect Dis 15:1844–1846

    Article  PubMed Central  PubMed  Google Scholar 

  43. Sassnau R, Kohn M, Demeler J et al (2013) Is Dirofilaria repens endemic in the Havelland district in Brandenburg, Germany? Vector borne Zoonotic Dis 13:888–891

    Article  PubMed  Google Scholar 

  44. Gautret P, Cramer JP, Field V et al (2010) Infectious diseases among travellers and migrants in Europe. EuroTravNet. Euro Surveill 17(26)

  45. BMU (2008) Deutsche Anpassungsstrategie an den Klimawandel: – Hintergrundpapier. http://www.bmu.de/fileadmin/bmu-import/files/pdfs/allgemein/application/pdf/das_hintergrund.pdf

  46. DAS (2011) Aktionsplan Anpassung der Deutschen Anpassungsstrategie an den Klimawandel, vom Bundeskabinett am 31. August 2011 beschlossen. http://www.bmu.de/fileadmin/bmu-import/files/pdfs/allgemein/application/pdf/aktionsplan_anpassung_klimawandel_bf.pdf

  47. Schmidt K, Dressel KM, Niedrig M et al (2013) Public health and vector-borne diseases – a new concept for risk governance. Zoonoses Public Health. doi:10.1111/zph.12045

  48. ASTHO (2005) Public health confronts the mosquito. Developing sustainable state and local mosquito control programs. Association of State and Territorial Health Officials (ASHTO) 2005. http://www.StatePublicHealth.org

  49. ASTHO (2009) Before the swarm: guidelines for the emergency management of mosquito-borne disease outbreaks. Association of State and Territorial Health Officials. http://www.astho.org/Programs/Environmental-Health/Natural-Environment/Before-the-Swarm/

  50. UN (2008) Contributing to one world, one health. A strategic framework for reducing risks of infectious diseases at the animal-human-ecosystems interface. http://un-influenza.org/sites/default/files/OWOH_14Oct08.pdf

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. N. Becker, A. Krüger, C. Kuhn, A. Plenge-Bönig, S.M. Thomas, J. Schmidt-Chanasit und E. Tannich geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Tannich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, N., Krüger, A., Kuhn, C. et al. Stechmücken als Überträger exotischer Krankheitserreger in Deutschland. Bundesgesundheitsbl. 57, 531–540 (2014). https://doi.org/10.1007/s00103-013-1918-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-013-1918-8

Schlüsselwörter

Keywords

Navigation