Skip to main content

Advertisement

Log in

Arbobakterien (über Arthropoden übertragbare Bakterien)

Stellungnahmen des Arbeitskreises Blut des Bundesministeriums für Gesundheit

  • Bekanntmachung
  • Mitteilungen des Arbeitskreises Blut des Bundesministeriums für Gesundheit
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Raoult D (2005) Introduction to Rickettsiosis and Ehrlichiosis. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practice of infectious diseases, 6th edn. Elsevier, Philadelphia, pp 2284–2287

  2. Arbeitskreis Blut, Untergruppe „Bewertung Blutassoziierter Krankheitserreger“ (2005) Coxiella burnetii – Erreger des Q-(query) Fiebers. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 48:814–821

    Google Scholar 

  3. Houhamdi L, Lepidi H, Drancourt M, Raoult D (2006) Experimental model to evaluate the human body louse as a vector of plague. J Infect Dis 194:1589–1596

    Article  PubMed  Google Scholar 

  4. Maeda K, Markowitz N, Hawley RC, et al. (1987) Human infection with Ehrlichia canis, a leukocytic Rickettsia. N Engl J Med 316:853–856

    Article  PubMed  CAS  Google Scholar 

  5. Walker DH, Dumler JS (2005) Ehrlichia chaffeensis (human monocytotropic Ehrlichiosis), Anaplasma phagocytophilum (human granulocytotropic Anaplasmosis) and other Ehrlichiae. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practice of infectious diseases, 6th edn. Elsevier, Philadelphia, pp 2310–2318

  6. Hildebrandt A, Schmidt KH, Wilske B, et al. (2003) Prevalence of four species of Borrelia burgdorferi sensu lato and coinfection with Anaplasma phagocytophila in Ixodes ricinus ticks in central Germany. Eur J Clin Microbiol Infect Dis 22:364–367

    Article  PubMed  CAS  Google Scholar 

  7. Wielinga PR, Gaasenbeek C, Fonville M, et al. (2006) Longitudinal analysis of tick densities and Borrelia, Anaplasma and Ehrlichia infections of Ixodes ricinus ticks in different habitat areas in The Netherlands. Appl Envrion Microbiol 72:7594–7601

    Article  CAS  Google Scholar 

  8. Standaert SM, Yu T, Scott MA, et al. (2000) Primary isolation of Ehrlichia chaffeensis from patients with febrile illness: clinical and molecular characteristics. J Infect Dis 181:1082–1088

    Article  PubMed  CAS  Google Scholar 

  9. Anderson BE, Sumner JW, Dawson JE, et al. (1992) Detection of the etiologic agent of human ehrlichiosis by polymerase chain reaction. J Clin Microbiol 30:775–780

    PubMed  CAS  Google Scholar 

  10. Standaert SM, Dawson JE, Schaffner W, et al. (1995) Ehrlichiosis in a golf oriented retirement community. N Engl J Med 333:420–425

    Article  PubMed  CAS  Google Scholar 

  11. Brouqui P, Lecam C, Olson J, Raoult D (1994) Serologicc diagnosis of human monocytic Ehrlichiosis by immunoblot analysis. Clin Diag Lab Immunol 1:645–649

    CAS  Google Scholar 

  12. Dreher UM, Fuente JDL, Hofmann-Lehmann R, et al. (2005) Serologic cross-rectivity between Anaplasma marginale and Anaplasma phagocytophilum. Clin Diag Lab Immunol 12:1177–1183

    Article  CAS  Google Scholar 

  13. Trofe J, Reddy KS, Stratta RJ, et al. (2001) Human granulocytic ehrlichiosis in pancreas transplant recipients. Transpl Infect Dis 3:34–39

    Article  PubMed  CAS  Google Scholar 

  14. Leiby DA, Chung AP, Cable RG, et al. (2002) Relationship between tick bites and the seroprevalence of Babesia microti and Anaplasma phagocytophila (previously Ehrlichia sp) in blood donors. Transfusion 42:1585–1591

    Article  PubMed  Google Scholar 

  15. Fingerle V, Goodman JL, Johnson RC, et al. (1997) Human granulocytic ehrlichiosis in Southern Germany; increased seroprevalence in high risk groups. J Clin Microbiol 35:3244–3247

    PubMed  CAS  Google Scholar 

  16. Fingerle V, Munderloh UG, Liegl G, Wilske B (1999) Coexsistence of ehrlichia of the phagocytophila group with Borrelia burgdorferi in Ixodes ricinus from Southern Germany. Med Microbiol Immuno 188:145–149

    Article  CAS  Google Scholar 

  17. Del Prete R, Fumarola D, Fumarola L, et al. (1999) Prevalence of antibodies to Bartonella henselae in patients with suspected cat scratch disease (CSD) in Italy. Eur J Epidemiol 15:583–587

    Article  PubMed  CAS  Google Scholar 

  18. McGill S, Wesslen L, Hjelm E, et al. (2001) Serological and epidemiological analysis of the prevalence of B spp antibodies in Swedish elite orienteers 1992–93. Scand J Infect Dis 33:423–428

    Article  PubMed  CAS  Google Scholar 

  19. Mallqui V, Speelmon EC, Verastegui M, et al. (2000) Sonicated diagnostic immunoblot for bartonellosis. Clin Diagn Lab Immunol 7:1–5

    PubMed  CAS  Google Scholar 

  20. Handley SA, Regnery RL (2000) Differentiation of pathogenic Bartonella species by infrequent restriction site PCR. J Clin Microbiol 38:3010–3015

    PubMed  CAS  Google Scholar 

  21. Kordick DL, Breitschwerdt EB (1997) Relapsing bacteriemia after blood transfusion of Bartonella henselae to cats. Am J Vet Res 58:492–497

    PubMed  CAS  Google Scholar 

  22. Steere AC, Malawista SE, Snydman DR, et al. (1977) Lyme arthritis: an epidemic of oligoarticular arthritis in children and adults in three Connecticut communities. Arthritis Rheum 20:7–17

    Article  PubMed  CAS  Google Scholar 

  23. Bannwarth A (1941) Chronische lymphozytäre Menigitis, entzündliche Polyneuritis und „Rheumatismus“. Arch Psychiatr Nervenkrankh 111:284–376

    Article  Google Scholar 

  24. Herxheimer K, Hartmann K (1902) Über Acrodermatitis chronica atrophicans. Arch Dermatol Syph 61:57–76, 255–300

    Article  Google Scholar 

  25. Afzelius A (1910) Bericht der Verhandlungen der Dermatologischen Gesellschaft zu Stockholm am 16. Dezember 1909. Arch Dermatol Syph 101:405

    Google Scholar 

  26. Fraser CM, Casjens S, Huang WM, et al. (1997) Genomic sequence of a Lyme disease spirochete, Borrelia burgdorferi. Nature 390:580–586

    Article  PubMed  CAS  Google Scholar 

  27. Schulte-Spechtel U, Lehnert G, Liegl G, et al. (2003) Significant improvement of the recombinant Borrelia-specific immunoglobulin G immunoblot test by addition of VlsE and a DbpA homologue derived from Borrelia garinii for diagnosis of early neuroborreliosis. J Clin Microbiol 41:1299–1303

    Article  PubMed  CAS  Google Scholar 

  28. Ramamoorthi N, Narasimhan S, Pal U, et al. (2005) The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436:573–577

    Article  PubMed  CAS  Google Scholar 

  29. Wilske B, Schriefer ME (2003) Borrelia. In: Murray PR, Baron EJ, Jorgensen JH et al. (eds) Manual of Clin Micriobiol, 8th edn. ASM press, pp 937–954

  30. Steere AC (1989) Lyme disease. N Engl J Med 321:586–596

    Article  PubMed  CAS  Google Scholar 

  31. Wilske B, Münchhoff P, Schierz G, et al. (1985) Zur Epidemiologie der Borrelia burgdorferi-Infektion. Münch Med Wochenschr 127:171–172

    Google Scholar 

  32. Tomao P, Ciceroni L, Ovidio MCD, et al. (2005) Prevalence and incidence of antibodies to Borrelia burgdorferi and to tick-borne encephalitis virus in agricultural and forestry workers from Tuscany, Italy. Eur J Clin Microbiol Infect 24:457–463

    Article  CAS  Google Scholar 

  33. Lledo L, Gegundez MI, Saz JV, Beltran M (2004) Screening of the prevalence of antibodies to Borrelia burgdorferi in Madrid province, Spain. Eur J Epidemiol 19:471–472

    Article  PubMed  Google Scholar 

  34. Hauser U, Lehnert G, Lobentanzer R, Wilske B (1997) Interpretation criteria for standardized western blots for three European species of Borrelia burgdorferi sensu lato. J Clin Microbiol 35:1433–1444

    PubMed  CAS  Google Scholar 

  35. Nocton JJ, Dressler F, Rutledge BJ, et al. (1994) Detection of Borrelia burgdorferi DNA by polymerase chain reaction in synovial fluid from patients with Lyme arthritis. N Engl J Med 330:229–234

    Article  PubMed  CAS  Google Scholar 

  36. Vasiliu V, Herzer D, Rössler D, et al. (1998) Heterogeneity of Borrelia burgdorferi sensu lato demonstrated by an OspA type specific PCR in synovial fluid from patients with Lyme arthritis. Med Microbiol Immunol 187:97–102

    Article  PubMed  CAS  Google Scholar 

  37. Nadal D, Wunderli W, Briner H, Hansen K (1989) Prevalence of antibodies to Borrelia burgdorferi in forestry workers and blood donors from the same region in Switzerland. Eur J Clin Microbiol Infect Dis 8:992–995

    Article  PubMed  CAS  Google Scholar 

  38. Bohme M, Schwenecke S, Fuchs E, et al. (1992) Screening of blood donors and recipients for Borrelia antibodies: no evidence of B. burgdorferi infection transmitted by transfusion. Infusionsther Transfusionsmed 19:204–207

    PubMed  CAS  Google Scholar 

  39. Weiland T, Kühnl P, Laufs R, Heesemann J (1992) Prevalence of Borrelia burgdorferi antibodies in Hamburg blood donors. Beitr Infusionsther 30:92–95

    PubMed  CAS  Google Scholar 

  40. Johnson SE, Swaminathan B, Moore P, et al. (1990) Borrelia burgdorferi: survival in experimentally infected human blood processed for transfusion. J Infect Dis 162:557–559

    PubMed  CAS  Google Scholar 

  41. Nadelman RB, Sherer C, Mack L, et al. (1990) Survival of Borrelia burgdorferi in human blood stored under blood banking conditions. Transfusion 30:298–301

    Article  PubMed  CAS  Google Scholar 

  42. Gerber MA, Shapiro ED, Krause PJ, et al. (1994) The risk of acquiring Lyme disease or babesiosis from a blood transfusion. J Infect Dis 170:231–234

    PubMed  CAS  Google Scholar 

  43. McCoy GM, Chapin CW (1912) Bacterium tularense the cause of a plaque-like disease of rodents. US Public Health Hosp Bull 53:17–23

    Google Scholar 

  44. Francis E (1921) The occurence of tularemia in nature as a disease of man. US Public Health Rep 36:1731–1738

    Google Scholar 

  45. Penn RL (2005) Francisella tularensis (Tularemia). In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practice of infectious diseases, 6th edn. Elsevier, Philadelphia, pp 2674–2685

  46. Ellis J, Oyston PC, Green M, Titball RW (2002) Tularemia. Clin Microbiol Rev 15:631–646

    Article  PubMed  Google Scholar 

  47. Petersen JM, Schriefer ME (2005) Tularemia: emergence/re-emergence. Vet Res 36:455–467

    Article  PubMed  Google Scholar 

  48. Barns SM, Grow CC, Okinaka RT, et al. (2005) Detection of diverse new Francisella like bacteria in environmental samples. Appl Environ Micrbiol 71:5494–5500

    Article  CAS  Google Scholar 

  49. Titball RW, Sjöstedt A (2003) Francisella tularensis: an overview. ASM News 11:558–563

    Google Scholar 

  50. Berdal BP, Mehl R, Meidell NK, et al. (1996) Field investigations of tularemia in Norway. FEMS Immunol Med Microbiol 13:191–195

    Article  PubMed  CAS  Google Scholar 

  51. Brotcke A, Weiss DS, Kim CC, et al. (2006) Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis. Infect Immun 74:6642–6655

    Article  PubMed  CAS  Google Scholar 

  52. Staples JE, Kubota KA, Chalcraft LG, et al. (2006) Epidemiologic and molecular analysis of human tularemia, United States, 1964–2004. Emerg Infect Dis 12:1113–1118

    PubMed  CAS  Google Scholar 

  53. Hall JD, Craven RR, Fuller JR, et al. (2007) Francisella tularensis replicates within alveolar type II epithelial cells in vitro and in vivo following inhalation. Infect Immun 75:1034–1039

    Article  PubMed  CAS  Google Scholar 

  54. Gurycova D, Kocianova E, Vyrostekova V, Rehacek J (1995) Prevealence of ticks infected with Francisella tularensis in natural foci of tularemia in western Slovakia. Eur J Epidemiol 11:469–474

    Article  PubMed  CAS  Google Scholar 

  55. Hubalek Z, Sixl W, Halouzka J (1998) Francisella tularensis in Dermatocenter reticularis ticks from the Czech Republic and Austria. Wien Klin Wochenschr 110:909–910

    PubMed  CAS  Google Scholar 

  56. Robert Koch-Institut (2005) Tularämie: Ausbruch unter Teilnehmern einer Hasen-Treibjagd im Landkreis Darmstadt-Dieburg, 2005. Epidemiol Bull 50:465–466

    Google Scholar 

  57. Tärnvik A (1989) Nature of protective immunity to Francisella tularensis. Rev Infect Dis 11:440–451

    PubMed  Google Scholar 

  58. Porsch-Ozcurumez M, Kischel N, Priebe H, et al. (2004) Comparison of enzyme-linked immunosorbent assay, Western blotting, microagglutination, indirect immunofluorescence assay, and flow cytometry for serological diagnosis of tularemia. Clin Diagn Lab Immunol 11:1008–1015

    Article  PubMed  CAS  Google Scholar 

  59. Bevanger L, Maeland JA, Naess AI (1989) Competitive enzyme immunoassay for antibodies to a 43,000 molecular weight Francisella tularensis outer membrane protein for the diagnosis of tularemia. J Clin Microbiol 27:922–926

    PubMed  CAS  Google Scholar 

  60. Fulop M, Leslie D, Titball R (1996) A rapid, highly sensitive method for the detection of Francisella tularensis in clinical samples using the polymerase chain reaction. Am J Trop Med Hyg 54:364–366

    PubMed  CAS  Google Scholar 

  61. Grunow RW, Spletstoesser W, McDonald S, et al. (2000) Detection of Francisella tularensis in biologiocal specimens using a capture enzyme-linked immunosorbent assay, an immunochromatochraphic handheld assay, and a PCR. Clin Diagn Lab Immunol 7:86–90

    PubMed  CAS  Google Scholar 

  62. Broekhuijsen M, Larsson P, Johansson A, et al. (2003) Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis. J Clin Microbiol 41:2924–2931

    Article  PubMed  CAS  Google Scholar 

  63. Higgins JA, Hubalek Z, Halouzka J, et al. (2000) Detection of Francisella tularensis in infected mammals and vectors using a probe-based polymerase chain reation. Am J Trop Med Hyg 62:310–318

    PubMed  CAS  Google Scholar 

  64. Khoury JA, Bohl DL, Hersh MJ, et al. (2005) Tularemia in a kidney transplant recipient: an unsuspected case and literature review. Am J Kidney Dis 45:926–929

    Article  PubMed  Google Scholar 

  65. Vishwanath S (1991) Antigenic relationships among the rickettsiae of the spotted fever and typhus group. FEMS Microbiol Lett 81:341–344

    Article  Google Scholar 

  66. McDade JE, Shepard CC, Redus MA, et al. (1980) Evidence of Rickettsia prowazekii infections in the United States. Am J Trop Med Hyg 29:277–284

    PubMed  CAS  Google Scholar 

  67. Brill NE (1910) An acute infectious disease of unknown origin. Am J Med Sci 139:484–502

    Article  Google Scholar 

  68. Zinsser H (1934) Varieties of typhus virus and the epidemiology of the American form of European typhus fever (Brill's disease). Am J Hyg 20:513–532

    Google Scholar 

  69. Dupont HT, Brouqui P, Faugere B, Raoult D (1995) Prevalence of antibodies to Coxiella burnetii, Rickettsia conorii, and Rickettsai typhi in seven African countries. Clin Infect Dis 21:1126–1133

    PubMed  CAS  Google Scholar 

  70. Schriefer ME, Sacci JB, Dumler JS, et al. (1994) Identification of a novel rickettsial infection in a patient diagnosed with murine typhus. J Clin Microbiol 32:949–954

    PubMed  CAS  Google Scholar 

  71. Tzianabos T, Anderson BE, McDade JE (1989) Detection of rickettsia rickettsii DNA in clinical specimens by using polymerase chain reaction technology. J Clin Microbiol 27:2866–2868

    PubMed  CAS  Google Scholar 

  72. Raoult D, Toga B, Chaudet H, Chiche-Portiche C (1987) Rickettsial antibody in southern France: antibodies to Rickettsia conorii and Coxiella burnetii among urban, suburban and semi-rural blood donors. Trans Roy Soc Trop Med Hyg 81:80–81

    Article  PubMed  CAS  Google Scholar 

  73. Tay ST, Kamalanathan M, Rohani MY (2003) Antibody prevalence of Orienta tsutsugamushi, Rickettsia typhi and TT118 spotted fever group rickettsiae among Malaysian blood donors and febrile patients in the urban areas. Southeast Asian J Trop Med Public Health 34:165–170

    PubMed  CAS  Google Scholar 

  74. Daniel SA, Manika K, Arvanmdou M, Antoniadis A (2002) Prevalence of Rickettsia conorii and Rickettsia typhi infections in the population of Northern Greece. Am J Trop Med Hyg 66:76–79

    PubMed  Google Scholar 

  75. Lledo L, Gegundez MI, Saz JV, Beltran M (2001) Prevalence of antibodies to Rickettsia typhi in an area of the center of Spain. Eur J Epidemiol 17:927–928

    Article  PubMed  CAS  Google Scholar 

  76. Ruiz-Beltran R, Herrero-Herrero JI, Martin-Sanchez AM, Martin-Gonzales JA (1990) Prevalence of antibodies to Rickettsia conorii, Coxiella burnetii and Rickettsia typhi in Salamanca Province (Spain). Serosurvey in the human population. Eur J Epidemiol 6:293–299

    Article  PubMed  CAS  Google Scholar 

  77. Wells GM, Woodward TE, Fiset P, Hornick BB (1978) Rocky mountain spotted fever caused by blood transfusion. J Am Med Ass 239:2763–2765

    Article  CAS  Google Scholar 

  78. Arbeitskreis Blut, Untergruppe „Bewertung Blutassoziierter Krankheitserreger“ (1999) Yersinia enterocolitica. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 42:613–621

    Google Scholar 

  79. Butler T, Dennis DT (2005) Yersinia species, including plague. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practice of infectious diseaeses, 6th edn. Elsevier, Philadelphia, pp 2691–2708

  80. Prentice MB, Rahalison L (2007) Plague. Lancet 369:1196–1207

    Article  PubMed  Google Scholar 

  81. Perry RD, FetherstonJD (1997) Yersinia pestis – ethiologic agent of plaque. Clin Micrbiol Rev 10:35–66

    CAS  Google Scholar 

  82. Saikh KU, Kissner TL, Dyas B, et al. (2006) Human cytolytic T cell recognition of Yersinia pestis virulence proteins that target innate immune response. J Infect Dis 194:1753–1760

    Article  PubMed  CAS  Google Scholar 

  83. Chalton DA, Musson JA, Smith HF, et al. (2006) Immunogenicity of a Yersinia pestis vaccine antigen monomerized by circular permutation. Infect Immun 74:6624–6631

    Article  PubMed  CAS  Google Scholar 

  84. Chase CJ, Ulrich MP, Wasieloski LP, et al. (2005) Real time PCR assays targeting a unique chromosomal sequence of Yersinia pestis. Clin Chem 51:1778–1785

    Article  PubMed  CAS  Google Scholar 

  85. Loiez C, Herwegh S, Wallet F, et al. (2003) Detection of Yersinia pestis in sputum by real-time PCR. J Clin Microbiol 41:4873–4875

    Article  PubMed  CAS  Google Scholar 

  86. Tomaso H, Reisinger EC, AlDahouk S, et al. (2003) Rapid detection of Rapid detection of ersinia pestis with multiplex real-time PCR assays using fluorescent hybridisation probes. FEMS Immunol Med Microbiol 38:117–126

    Article  PubMed  CAS  Google Scholar 

  87. Hansmann Y, DeMartino S, Piémont Y, et al. (2005) Diagnosis of cat scratch disease with detection of Bartonella henselae by PCR: a study of patients with lymph node enlargement. J Clin Microbiol 43:3800–3806

    Article  PubMed  CAS  Google Scholar 

  88. Simon MM, Birkner N, Lamers R, Wallich R (2006) Outer surface lipoproteins of Borrelia burgdorferi: role in virulence, persistence of the pathogen and protection against Lyme disease. In: Cabello FC, Hulinska D, Godfrey HP (eds) Molecular biology of spirochetes. Nato Science Series, I: Life and Behavioural Sciences 373:383–392 IOS Press, Fairfax, VAUSA

    CAS  Google Scholar 

  89. Hepbrun MJ, Purcell BK, Lawler JV, et al. (2006) Live vaccine strain Francisella tularensis is detectable at the inoculation site but not in blood after vaccination against tularaemia. Clin Infect Dis 43:711–716

    Article  Google Scholar 

  90. Pechous R, Celli J, Penoske R, et al. (2006) Construction and characterization of an attenuated prurine auxotroph in a Francisella tularensis live vaccine strain. Infect Immun 74:4452–4461

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbobakterien (über Arthropoden übertragbare Bakterien). Bundesgesundheitsbl. 50, 1192–1207 (2007). https://doi.org/10.1007/s00103-007-0320-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-007-0320-9

Navigation