Skip to main content
Log in

Frühmobilisation auf der Intensivstation – Sind robotergestützte Systeme die Zukunft?

Early mobilization in the intensive care unit—Are robot-assisted systems the future?

  • Intensivmedizin
  • Published:
Die Anaesthesiologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Bei etwa 43 % aller Überlebenden der Intensivmedizin wird ein erworbenes Syndrom an Muskelschwäche beobachtet, welches Überleben und Lebensqualität vermindert. Da kausale Therapieoptionen bisher fehlen, stehen die Vermeidung der bekannten Risikofaktoren und Frühmobilisation im Vordergrund. Robotische Unterstützungssysteme werden vermehrt in der Mobilisation erprobt.

Ziel der Arbeit

In diesem Übersichtsartikel wird die aktuelle Evidenz von Frühmobilisation von kritisch Kranken zusammengefasst und der Stellenwert robotischer Assistenzsysteme für Mobilisation diskutiert.

Ergebnisse

Mobilisation sollte auf der Intensivstation nach Möglichkeit früh begonnen werden. Hierunter wird der Beginn in den ersten 72 h nach der Aufnahme auf die Intensivstation verstanden. Physiotherapeutische Interventionen während des Intensivaufenthalts zeigen positive Effekte auf die Lebensqualität von PatientInnen, auf die Dauer von invasiver Beatmung, Intensivaufenthalt und Delir. Strukturierte Behandlungsprotokolle führen zu mehr aktiver Mobilisation, höherer Mobilität und häufigerer funktioneller Unabhängigkeit bei Entlassung aus dem Krankenhaus. Nach Schlaganfällen erhöhen zusätzliche robotergestützte Therapieeinheiten insbesondere bei stärker eingeschränkten PatientInnen die Rate an Rückkehrern zum selbstständigen Gehen, scheinen sicher und verbesserten in kleinen Studien Muskelkraft und Lebensqualität.

Schlussfolgerung

Frühmobilisation verbessert das Outcome von kritisch Erkrankten. Robotische Systeme unterstützen das Gangtraining nach einem Schlaganfall und werden auf der Intensivstation in ersten Studien zu Vertikalisierung und Frühmobilisation untersucht.

Abstract

Background

Intensive care unit (ICU) acquired weakness is associated with reduced physical function, increased mortality and reduced quality of life, and affects about 43% of survivors of critical illness. Lacking therapeutic options, the prevention of known risk factors and implementation of early mobilization is essential. Robotic assistance devices are increasingly being studied in mobilization.

Objective

This qualitative review synthesizes the evidence of early mobilization in the ICU and focuses on the advantages of robotic assistance devices.

Results

Active mobilization should begin early during critical care. Interventions commencing 72 h after admission to the ICU are considered early. Mobilization interventions during critical care have been shown to be safe and reduce the time on mechanical ventilation in the ICU and the length of delirious episodes. Protocolized early mobilization interventions led to more active mobilization and increased functional independence and mobility at hospital discharge. In rehabilitation after stroke, robot-assisted training increases the chance of regaining independent walking ability, especially in more severely impaired patients, seems to be safe and increases muscle strength and quality of life in small trials.

Conclusion

Early mobilization improves the outcome of the critically ill. Robotic devices support the gait training after stroke and are the subject of ongoing studies on early mobilization and verticalization in the intensive care setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Barber EA, Everard T, Holland AE et al (2015) Barriers and facilitators to early mobilisation in intensive care: a qualitative study. Aust Crit Care 28(4):177–182. https://doi.org/10.1016/j.aucc.2014.11.001 (quiz 183)

    Article  PubMed  Google Scholar 

  2. Baron R, Binder A, Biniek R et al (2015) Evidence and consensus based guideline for the management of delirium, analgesia, and sedation in intensive care medicine. Revision 2015 (DAS-Guideline 2015)—short version. Ger Med Sci 13:Doc19. https://doi.org/10.3205/000223

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bein T, Bischoff M, Brückner U et al (2015) S2e guideline: positioning and early mobilisation in prophylaxis or therapy of pulmonary disorders: revision 2015: S2e guideline of the German society of anaesthesiology and intensive care medicine (DGAI). Anaesthesist 64(1):1–26. https://doi.org/10.1007/s00101-015-0071-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bernhardt J, Churilov L, Ellery F et al (2016) Prespecified dose-response analysis for a very early rehabilitation trial (AVERT). Neurology 86(23):2138–2145. https://doi.org/10.1212/WNL.0000000000002459

    Article  PubMed  PubMed Central  Google Scholar 

  5. Burtin C, Clerckx B, Robbeets C et al (2009) Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med 37(9):2499–2505. https://doi.org/10.1097/CCM.0b013e3181a38937

    Article  PubMed  Google Scholar 

  6. Calabrò RS, Naro A, Russo M et al (2015) Do post-stroke patients benefit from robotic verticalization? A pilot-study focusing on a novel neurophysiological approach. Restor Neurol Neurosci 33(5):671–681. https://doi.org/10.3233/RNN-140475

    Article  PubMed  PubMed Central  Google Scholar 

  7. Charite University, Berlin, Germany Reactive robotics GmbH robotic assisted early mobilization in ventilated ICU patients. https://ClinicalTrials.gov/show/NCT04423796. Zugegriffen: 06. Juni 2022

  8. Charite University, Berlin, Germany Reactive robotics GmbH robotic assisted early mobilization in ventilated ICU patients with COVID-19. https://ClinicalTrials.gov/show/NCT04750265. Zugegriffen: 06. Juni 2022

  9. Clarissa C, Salisbury L, Rodgers S et al (2019) Early mobilisation in mechanically ventilated patients: a systematic integrative review of definitions and activities. J Intensive care 7:3. https://doi.org/10.1186/s40560-018-0355-z

    Article  PubMed  PubMed Central  Google Scholar 

  10. Connolly B, O’Neill B, Salisbury L et al (2016) Physical rehabilitation interventions for adult patients during critical illness: an overview of systematic reviews. Thorax 71(10):881–890. https://doi.org/10.1136/thoraxjnl-2015-208273

    Article  PubMed  Google Scholar 

  11. Ding N, Zhang Z, Zhang C et al (2019) What is the optimum time for initiation of early mobilization in mechanically ventilated patients? A network meta-analysis. PLoS ONE 14(10):e223151. https://doi.org/10.1371/journal.pone.0223151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fan E, Cheek F, Chlan L et al (2014) An official American thoracic society clinical practice guideline: the diagnosis of intensive care unit-acquired weakness in adults. Am J Respir Crit Care Med 190(12):1437–1446. https://doi.org/10.1164/rccm.201411-2011ST

    Article  PubMed  Google Scholar 

  13. Friedrich O, Reid MB, Van den Berghe G et al (2015) The sick and the weak: neuropathies/myopathies in the critically ill. Physiol Rev 95(3):1025–1109. https://doi.org/10.1152/physrev.00028.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hermans G, Van Mechelen H, Clerckx B et al (2014) Acute outcomes and 1‑year mortality of intensive care unit-acquired weakness. A cohort study and propensity-matched analysis. Am J Respir Crit Care Med 190(4):410–420. https://doi.org/10.1164/rccm.201312-2257OC

    Article  PubMed  Google Scholar 

  15. Hickmann CE, Castanares-Zapatero D, Deldicque L et al (2018) Impact of very early physical therapy during septic shock on skeletal muscle: a randomized controlled trial. Crit Care Med 46(9):1436–1443. https://doi.org/10.1097/CCM.0000000000003263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hodgson CL, Bailey M, Bellomo R et al (2016) A binational multicenter pilot feasibility randomized controlled trial of early goal-directed mobilization in the ICU. Crit Care Med 44(6):1145–1152. https://doi.org/10.1097/CCM.0000000000001643

    Article  PubMed  Google Scholar 

  17. Kumar S, Yadav R, Aafreen (2020) Comparison between Erigo tilt-table exercise and conventional physiotherapy exercises in acute stroke patients: a randomized trial. Arch Physiother 10:3. https://doi.org/10.1186/s40945-020-0075-2

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mehrholz J, Thomas S, Kugler J et al (2020) Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 10:CD6185. https://doi.org/10.1002/14651858.CD006185.pub5

    Article  PubMed  Google Scholar 

  19. Menges D, Seiler B, Tomonaga Y et al (2021) Systematic early versus late mobilization or standard early mobilization in mechanically ventilated adult ICU patients: systematic review and meta-analysis. Crit Care 25(1):16. https://doi.org/10.1186/s13054-020-03446-9

    Article  PubMed  PubMed Central  Google Scholar 

  20. Morris PE, Berry MJ, Files DC et al (2016) Standardized rehabilitation and hospital length of stay among patients with acute respiratory failure: a randomized clinical trial. JAMA 315(24):2694–2702. https://doi.org/10.1001/jama.2016.7201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nydahl P, Sricharoenchai T, Chandra S et al (2017) Safety of patient mobilization and rehabilitation in the intensive care unit. Systematic review with meta-analysis. Annals ATS 14(5):766–777. https://doi.org/10.1513/AnnalsATS.201611-843SR

    Article  Google Scholar 

  22. Rocca A, Pignat J‑M, Berney L et al (2016) Sympathetic activity and early mobilization in patients in intensive and intermediate care with severe brain injuries: a preliminary prospective randomized study. BMC Neurol 16(1):169. https://doi.org/10.1186/s12883-016-0684-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schaller SJ, Anstey M, Blobner M et al (2016) Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet 388(10052):1377–1388. https://doi.org/10.1016/s0140-6736(16)31637-3

    Article  PubMed  Google Scholar 

  24. Schweickert WD, Pohlman MC, Pohlman AS et al (2009) Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 373(9678):1874–1882. https://doi.org/10.1016/S0140-6736(09)60658-9

    Article  PubMed  Google Scholar 

  25. Stevens RD, Marshall SA, Cornblath DR et al (2009) A framework for diagnosing and classifying intensive care unit-acquired weakness. Crit Care Med 37(10):S299–308. https://doi.org/10.1097/CCM.0b013e3181b6ef67

    Article  PubMed  Google Scholar 

  26. The AVERT Trial Collaboration group (2015) Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet 386(9988):46–55. https://doi.org/10.1016/S0140-6736(15)60690-0

    Article  Google Scholar 

  27. Timenetsky KT, Neto AS, Assunção MSC et al (2020) Mobilization practices in the ICU: a nationwide 1‑day point-prevalence study in Brazil. PLoS ONE 15(4):e230971. https://doi.org/10.1371/journal.pone.0230971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Waldauf P, Jiroutková K, Krajčová A et al (2020) Effects of rehabilitation interventions on clinical outcomes in critically ill patients: systematic review and meta-analysis of randomized controlled trials. Crit Care Med 48(7):1055–1065. https://doi.org/10.1097/CCM.0000000000004382

    Article  PubMed  Google Scholar 

  29. Warmbein A, Schroeder I, Mehler-Klamt AC et al (2022) Evaluation of effects of robot-assisted early mobilization on critically ill patients, on the mobilization behaviour and experience of the mobilizing professionals and the organizational processes in an intensive care unit—a clinical intervention study (study protocol)

    Book  Google Scholar 

  30. Wieske L, Dettling-Ihnenfeldt DS, Verhamme C et al (2015) Impact of ICU-acquired weakness on post-ICU physical functioning: a follow-up study. Crit Care 19(1):196. https://doi.org/10.1186/s13054-015-0937-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Huebner.

Ethics declarations

Interessenkonflikt

S.J. Schaller berichtet über Zuschüsse und nichtfinanzielle Unterstützung von ESICM (Brüssel, Belgien), Fresenius (Deutschland), Liberate Medical LLC (Crestwood, USA), STIMIT AG (Nidau, Schweiz) sowie von der Technischen Universität München, Deutschland, von nationalen (z. B. DGAI) und internationalen (z. B. ESICM) medizinischen Gesellschaften (oder deren Kongressveranstaltern) im Bereich der Anästhesiologie und Intensivmedizin, persönliche Honorare und nichtfinanzielle Unterstützung von P.A.I.N.S., alle außerhalb der eingereichten Arbeit. S.J. Schaller hält in geringem Umfang Aktien der Alphabeth Inc., der Rhön-Klinikum AG und der Siemens AG. Dies hatte keinen Einfluss auf das vorliegende Manuskript. I. Schroeder, E. Kraft, M. Gutmann, J. Biebl, A.C. Klamt, J. Frey, A. Warmbein, I. Rathgeber, I. Eberl, U. Fischer und C. Scharf werden in Rahmen des BMBF Projekt „MobiStaR“ (Förderkennziffer: 16SV842) zur Etablierung robotischer Mobilisation gefördert. Dies hatte keinen Einfluss auf das Manuskript. L. Huebner und M. Zoller geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huebner, L., Schroeder, I., Kraft, E. et al. Frühmobilisation auf der Intensivstation – Sind robotergestützte Systeme die Zukunft?. Anaesthesiologie 71, 795–800 (2022). https://doi.org/10.1007/s00101-022-01130-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-022-01130-x

Schlüsselwörter

Keywords

Navigation