Skip to main content
Log in

Kardioprotektion beim herzchirurgischen Patienten

Alles Gute kommt von Herzen

Cardioprotection in cardiac surgical patients

Everything good comes from the heart

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Trotz signifikanter Fortschritte in operativen Techniken, der Anästhesie und in der Intensivmedizin zeigen Patienten nach herzchirurgischen Eingriffen regelmäßig Organdysfunktionen mit bedeutenden klinischen Auswirkungen.

Fragestellung

Welche Strategien zur Kardioprotektion sind bei diesen gefährdeten Patienten mit einem klinischen Nutzen assoziiert?

Material und Methoden

Vorstellung der etablierten und neueren Strategien zum Schutz dieser Patienten, die gemeinsam zum Ziel haben, die körpereigenen protektiven Mechanismen zu nutzen.

Ergebnisse

Sowohl die Hypothermie als auch die Kardioplegie gehören zu den lang etablierten protektiven Strategien während myokardialer Ischämie. Die Applikation von volatilen Anästhetika zeigte bei Patienten mit herzchirurgischen Eingriffen eine signifikant verbesserte linksventrikuläre Funktion sowie eine reduzierte Myokardschädigung im Vergleich zur Kontrollgruppe mit intravenöser Anästhesie. Ebenso konnte eine verkürzte Aufenthaltsdauer auf der Intensivstation und im Krankenhaus nachgewiesen werden. Allerdings fehlen bis heute große randomisiert-kontrollierte Multicenter-Studien, die einen positiven klinischen Nutzen belegen. Die Translation von weiteren kardioprotektiven Strategien ist in der klinischen Anwendung bisher mehrheitlich gescheitert. Im Gegensatz zur initial demonstrierten Reduktion der Troponinfreisetzung nach Remote Ischemic Preconditioning konnte in den zuletzt publizierten großen Multicenter-Studien durch Fernkonditionierung kein Nutzen im Hinblick auf die klinischen Ergebnisse belegt werden.

Schlussfolgerung

Neben der Kardioplegie und Hypothermie hat sich der Gebrauch von volatilen Anästhetika aufgrund der konditionierenden und kardioprotektiven Eigenschaften fest etabliert. Bei weiteren vielversprechenden pharmakologischen Strategien ist die Translation der experimentellen Ergebnisse in die klinische Praxis bisher gescheitert. Weitere systematische Grundlagenforschung ist notwendig, um potenzielle Störfaktoren zu identifizieren.

Abstract

Background

Despite substantial success in the anesthetic and surgical management of cardiac surgery, patients frequently show postoperative complications and organ dysfunctions. This is highly relevant for mid- to long-term outcomes.

Objectives

To evaluate cardioprotective strategies that may offer effective protection in vulnerable cardiac surgery patients.

Methods

To demonstrate recent cardioprotective approaches for cardiac surgery patients, aiming to modulate the body’s own protective mechanisms in cardiac surgery patients.

Results

Both cardioplegia and hypothermia belong to the well-established protective strategies during myocardial ischemia. Volatile anesthetics have been repeatedly shown to improve the left ventricular function and reduce the extent of myocardial injury compared to a control group with intravenous anesthesia. Furthermore, patients receiving volatile anesthetics showed a significantly shortened stay in the ICU and in hospital after cardiac surgery. In contrast, numerous other protective strategies failed translation into the clinical practice. Despite the published reduction of troponin release after remote ischemic preconditioning, two recent large-scale randomized multicenter trials were unable to demonstrate a clinical benefit.

Conclusions

Beside the use of cardioplegia and hypothermia, the use of volatile anesthetics is well-established during cardiac surgery because of its conditioning and protective properties. Regardless of the promising results derived from experimental studies and small clinical trials, the majority of other approaches failed to translate their findings into the clinic. Therefore, systematic experimental studies are needed to identify potential confounding factors that may affect the protective effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Adams DH, Popma JJ, Reardon MJ (2014) Transcatheter aortic-valve replacement with a self-expanding prosthesis. N Engl J Med 371:967–968. doi:10.1056/NEJMc1408396

    Article  PubMed  Google Scholar 

  2. Belhomme D, Peynet J, Louzy M et al (1999) Evidence for preconditioning by isoflurane in coronary artery bypass graft surgery. Circulation 100:II340–II344

    Article  CAS  PubMed  Google Scholar 

  3. Bell RM, Yellon DM (2003) Atorvastatin, administered at the onset of reperfusion, and independent of lipid lowering, protects the myocardium by up-regulating a pro-survival pathway. J Am Coll Cardiol 41:508–515

    Article  CAS  PubMed  Google Scholar 

  4. Bhagatte Y, Lodwick D, Storey N (2012) Mitochondrial ROS production and subsequent ERK phosphorylation are necessary for temperature preconditioning of isolated ventricular myocytes. Cell Death Dis 3:e345. doi:10.1038/cddis.2012.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bonvini JM, Beck-Schimmer B, Kuhn SJ et al (2015) Late Post-Conditioning with Sevoflurane after Cardiac Surgery – Are Surrogate Markers Associated with Clinical Outcome? PLoS ONE 10:e0132165 doi:10.1371/journal.pone.0132165

    Article  PubMed  PubMed Central  Google Scholar 

  6. Buckberg GD, Brazier JR, Nelson RL et al (1977) Studies of the effects of hypothermia on regional myocardial blood flow and metabolism during cardiopulmonary bypass. I. The adequately perfused beating, fibrillating, and arrested heart. J Thorac Cardiovasc Surg 73:87–94

    CAS  PubMed  Google Scholar 

  7. Calafiore AM, Teodori G, Di Giammarco G et al (1994) Intermittent antegrade cardioplegia: warm blood vs cold crystalloid. A clinical study. J Cardiovasc Surg (Torino) 35:179–184

    CAS  Google Scholar 

  8. Cope DK, Impastato WK, Cohen MV, Downey JM (1997) Volatile anesthetics protect the ischemic rabbit myocardium from infarction. Anesthesiology 86:699–709

    Article  CAS  PubMed  Google Scholar 

  9. Croom KF, Curran MP (2008) Sildenafil: a review of its use in pulmonary arterial hypertension. Drugs 68:383–397

    Article  CAS  PubMed  Google Scholar 

  10. Cung TT, Morel O, Cayla G et al (2015) Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med 373:1021–1031. doi:10.1056/NEJMoa1505489

    Article  CAS  PubMed  Google Scholar 

  11. D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824. doi:10.1038/nrm2256

    Article  PubMed  Google Scholar 

  12. Damm M, Hübler A, Heller AR (2011) Cardioprotection. Anaesthesist 60(1081–2):1065–1080. doi:10.1007/s00101-011-1943-7

    Article  CAS  PubMed  Google Scholar 

  13. Davis RF, DeBoer LW, Rude RE et al (1983) The effect of halothane anesthesia on myocardial necrosis, hemodynamic performance, and regional myocardial blood flow in dogs following coronary artery occlusion. Anesthesiology 59:402–411

    Article  CAS  PubMed  Google Scholar 

  14. De Hert S, Vlasselaers D, Barbé R et al (2009) A comparison of volatile and non volatile agents for cardioprotection during on-pump coronary surgery. Anaesthesia 64:953–960. doi:10.1111/j.1365-2044.2009.06008.x

    Article  PubMed  Google Scholar 

  15. De Hert SG, Van der Linden PJ (2004) Left ventricular function after cardiopulmonary bypass is related to the length-dependent regulation of myocardial function. Anesth Analg 312(99):311–312 (author reply)

    Article  Google Scholar 

  16. Deppe A‑C, Arbash W, Kuhn EW et al (2015) Current evidence of coronary artery bypass grafting off-pump versus on-pump: a systematic review with meta-analysis of over 16 900 patients investigated in randomized controlled trials. Eur J Cardiothorac Surg. doi:10.1093/ejcts/ezv268

    Google Scholar 

  17. Di Sciascio G, Patti G, Pasceri V et al (2009) Efficacy of atorvastatin reload in patients on chronic statin therapy undergoing percutaneous coronary intervention: results of the ARMYDA-RECAPTURE (Atorvastatin for Reduction of Myocardial Damage During Angioplasty) Randomized Trial. J Am Coll Cardiol 54:558–565. doi:10.1016/j.jacc.2009.05.028

    Article  PubMed  Google Scholar 

  18. Dickinson R, Franks NP (2010) Bench-to-bedside review: Molecular pharmacology and clinical use of inert gases in anesthesia and neuroprotection. Crit Care 14:229 doi:10.1186/cc9051

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dieleman JM, Nierich AP, Rosseel PM et al (2012) Intraoperative high-dose dexamethasone for cardiac surgery: a randomized controlled trial. J Am Med Assoc 308:1761–1767. doi:10.1001/jama.2012.14144

    Article  Google Scholar 

  20. Fahlenkamp AV, Rossaint R, Coburn M (2015) Neuroprotection by noble gases: New developments and insights. Anaesthesist, 1–4. doi:10.1007/s00101-015-0079-6

    PubMed  Google Scholar 

  21. Fahlenkamp AV, Rossaint R, Haase H et al (2012) The noble gas argon modifies extracellular signal-regulated kinase 1/2 signaling in neurons and glial cells. Eur J Pharmacol 674:104–111. doi:10.1016/j.ejphar.2011.10.045

    Article  CAS  PubMed  Google Scholar 

  22. Fan Y, Zhang A‑M, Xiao Y‑B et al (2011) Glucose-insulin-potassium therapy in adult patients undergoing cardiac surgery: a meta-analysis. Eur J Cardiothorac Surg 40:192–199. doi:10.1016/j.ejcts.2010.10.007

    Article  PubMed  Google Scholar 

  23. Garcia C, Julier K, Bestmann L et al (2005) Preconditioning with sevoflurane decreases PECAM-1 expression and improves one-year cardiovascular outcome in coronary artery bypass graft surgery. Br J Anaesth, 159–165. doi:10.1093/bja/aei026

    Google Scholar 

  24. Goetzenich A, Hatam N, Preuss S et al (2014) The role of hypoxia-inducible factor-1α and vascular endothelial growth factor in late-phase preconditioning with xenon, isoflurane and levosimendan in rat cardiomyocytes. Interact Cardiovasc Thorac Surg 18:321–328. doi:10.1093/icvts/ivt450

    Article  PubMed  PubMed Central  Google Scholar 

  25. Goetzenich A, Roehl AB, Moza A et al (2011) The effects of metoprolol on hypoxia- and isoflurane-induced cardiac late-phase preconditioning. Acta Anaesthesiol Scand 55:862–869. doi:10.1111/j.1399-6576.2011.02455.x

    Article  CAS  PubMed  Google Scholar 

  26. Gross GJ (2003) Role of opioids in acute and delayed preconditioning. J Mol Cell Cardiol 35:709–718

    Article  CAS  PubMed  Google Scholar 

  27. Hall R (2013) Identification of inflammatory mediators and their modulation by strategies for the management of the systemic inflammatory response during cardiac surgery. J Cardiothorac Vasc Anesth 27(013):983–1033. doi:10.1053/j.jvca

    Article  PubMed  Google Scholar 

  28. Hausenloy DJ, Candilio L, Evans R et al (2015) Remote Ischemic preconditioning and outcomes of cardiac surgery. N Engl J Med 373:1408–1417. doi:10.1056/NEJMoa1413534

    Article  CAS  PubMed  Google Scholar 

  29. Hausenloy DJ, Candilio L, Laing C et al (2012) Effect of remote ischemic preconditioning on clinical outcomes in patients undergoing coronary artery bypass graft surgery (ERICCA): rationale and study design of a multi-centre randomized double-blinded controlled clinical trial. Clin Res Cardiol 101:339–348. doi:10.1007/s00392-011-0397-x

    Article  CAS  PubMed  Google Scholar 

  30. Hausenloy DJ, Kharbanda R, Rahbek SM et al (2015) Effect of remote ischaemic conditioning on clinical outcomes in patients presenting with an ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Eur Heart J 36:1846–1848

    PubMed  Google Scholar 

  31. Hausenloy DJ, Lim SY, Ong S‑G et al (2010) Mitochondrial cyclophilin-D as a critical mediator of ischaemic preconditioning. Cardiovasc Res 88:67–74. doi:10.1093/cvr/cvq113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hausenloy DJ, Mwamure PK, Venugopal V et al (2007) Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet 370:575–579. doi:10.1016/s0140-6736(07)61296-3

    Article  PubMed  Google Scholar 

  33. Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 61:448–460. doi:10.1016/j.cardiores.2003.09.024

    Article  CAS  PubMed  Google Scholar 

  34. Hausenloy DJ, Yellon DM (2009) Preconditioning and postconditioning: Underlying mechanisms and clinical application. Atherosclerosis 204:334–341. doi:10.1016/j.atherosclerosis.2008.10.029

    Article  CAS  PubMed  Google Scholar 

  35. Healy DA, Khan WA, Wong CS et al (2014) Remote preconditioning and major clinical complications following adult cardiovascular surgery: Systematic review and meta-analysis. Int J Cardiol 176:20–31. doi:10.1016/j.ijcard.2014.06.018

    Article  CAS  PubMed  Google Scholar 

  36. Zhou C, Liu Y, Yao Y et al (2013) Beta-blockers and volatile anesthetics may attenuate cardioprotection by remote preconditioning in adult cardiac surgery: a meta-analysis of 15 randomized trials. J Cardiothorac Vasc Anesth 27:305–311

    Article  CAS  PubMed  Google Scholar 

  37. Hu Z‑Y, Liu J (2009) Mechanism of cardiac preconditioning with volatile anaesthetics. Anaesth Intensive Care 37:532–538

    PubMed  Google Scholar 

  38. Ikeda Y, Young LH, Lefer AM (2003) Rosuvastatin, a new HMG-CoA reductase inhibitor, protects ischemic reperfused myocardium in normocholesterolemic rats. J Cardiovasc Pharmacol 41:649–656

    Article  CAS  PubMed  Google Scholar 

  39. Jain M, Chandel NS (2013) Rethinking antioxidants in the intensive care unit. Am J Respir Crit Care Med 188:1283–1285. doi:10.1164/rccm.201307-1380CP

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jonassen AK, Sack MN, Mjøs OD, Yellon DM (2001) Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 89:1191–1198

    Article  CAS  PubMed  Google Scholar 

  41. Khaliulin I, Clarke SJ, Lin H et al (2007) Temperature preconditioning of isolated rat hearts–a potent cardioprotective mechanism involving a reduction in oxidative stress and inhibition of the mitochondrial permeability transition pore. J Physiol (Lond) 581:1147–1161. doi:10.1113/jphysiol.2007.130369

    Article  CAS  Google Scholar 

  42. Kottenberg E, Musiolik J, Thielmann M et al (2014) Interference of propofol with signal transducer and activator of transcription 5 activation and cardioprotection by remote ischemic preconditioning during coronary artery bypass grafting. J Thorac Cardiovasc Surg, 376–382. doi:10.1016/j.jtcvs.2013.01.005

    PubMed  Google Scholar 

  43. Kukreja RC, Salloum FN, Das A et al (2011) Emerging new uses of phosphodiesterase-5 inhibitors in cardiovascular diseases. Exp Clin Cardiol 16:30–35

    Google Scholar 

  44. Kusuoka H, Ikoma Y, Futaki S et al (1991) Positive inotropism in hypothermia partially depends on an increase in maximal Ca(2+)-activated force. Am J Physiol 261:H1005–10

    CAS  PubMed  Google Scholar 

  45. Laffey JG, Boylan JF, Cheng DCH (2002) The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology 97:215–252

    Article  CAS  PubMed  Google Scholar 

  46. Lamy A, Devereaux PJ, Prabhakaran D et al (2012) Off-pump or on-pump coronary-artery bypass grafting at 30 days. N Engl J Med 366:1489–1497. doi:10.1056/NEJMoa1200388

    Article  CAS  PubMed  Google Scholar 

  47. Landoni G, Biondi-Zoccai GGL, Zangrillo A et al (2007) Desflurane and Sevoflurane in cardiac surgery: a meta-analysis of randomized clinical trials. J Cardiothorac Vasc Anesth 21(013):502–511. doi:10.1053/j.jvca

    Article  CAS  PubMed  Google Scholar 

  48. Lange M, Smul TM, Redel A et al (2008) Differential role of calcium/calmodulin-dependent protein kinase II in desflurane-induced preconditioning and cardioprotection by metoprolol: metoprolol blocks desflurane-induced preconditioning. Anesthesiology 109:72–80. doi:10.1097/ALN.0b013e31817be96c

    Article  CAS  PubMed  Google Scholar 

  49. Liakopoulos OJ, Kuhn EW, Hellmich M et al (2015) Statin Recapture Therapy before Coronary Artery Bypass Grafting Trial: Rationale and study design of a multicenter, randomized, double-blinded controlled clinical trial. Am Heart J 170:46–54 (54.e1–2). doi:10.1016/j.ahj.2015.04.015

    Article  CAS  PubMed  Google Scholar 

  50. Liakopoulos OJ, Kuhn EW, Slottosch I et al (2012) Preoperative statin therapy for patients undergoing cardiac surgery. Cochrane Database Syst Rev 4:CD008493 doi:10.1002/14651858.CD008493.pub2

    PubMed  Google Scholar 

  51. Lockwood GG, Franks NP, Downie NA et al (2006) Feasibility and safety of delivering xenon to patients undergoing coronary artery bypass graft surgery while on cardiopulmonary bypass: phase I study. Anesthesiology 104:458–465

    Article  PubMed  Google Scholar 

  52. Ludman AJ, Hausenloy DJ, Babu G et al (2011) Failure to recapture cardioprotection with high-dose atorvastatin in coronary artery bypass surgery: a randomised controlled trial. Basic Res Cardiol 106:1387–1395. doi:10.1007/s00395-011-0209-5

    Article  CAS  PubMed  Google Scholar 

  53. Mehta SR, Yusuf S, Díaz R et al (2005) Effect of glucose-insulin-potassium infusion on mortality in patients with acute ST-segment elevation myocardial infarction: the CREaTE-ECLa randomized controlled trial. JAMA 293:437–446. doi:10.1001/jama.293.4.437

    Article  PubMed  Google Scholar 

  54. Meldrum DR, Cleveland JC, Sheridan BC et al (1996) Cardiac preconditioning with calcium: clinically accessible myocardial protection. J Thorac Cardiovasc Surg 112:778–786

    Article  CAS  PubMed  Google Scholar 

  55. Meybohm P, Bein B, Brosteanu O et al (2015) A Multicenter Trial of Remote Ischemic Preconditioning for Heart Surgery. N Engl J Med 373:1397–1407. doi:10.1056/NEJMoa1413579

    Article  CAS  PubMed  Google Scholar 

  56. Miyawaki H, Ashraf M (1997) Ca2+ as a mediator of ischemic preconditioning. Circ Res 80:790–799

    Article  CAS  PubMed  Google Scholar 

  57. Murphy GS, Hessel EA, Groom RC (2009) Optimal perfusion during cardiopulmonary bypass: an evidence-based approach. Anesth Analg 108:1394–1417. doi:10.1213/ane.0b013e3181875e2e

    Article  PubMed  Google Scholar 

  58. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  CAS  PubMed  Google Scholar 

  59. Pagel PS, Krolikowski JG, Shim YH et al (2007) Noble gases without anesthetic properties protect myocardium against infarction by activating prosurvival signaling kinases and inhibiting mitochondrial permeability transition in vivo. Anesth Analg 105:562–569. doi:10.1213/01.ane.0000278083.31991.36

    Article  CAS  PubMed  Google Scholar 

  60. Patti G, Pasceri V, Colonna G et al (2007) Atorvastatin pretreatment improves outcomes in patients with acute coronary syndromes undergoing early percutaneous coronary intervention: results of the ARMYDA-ACS randomized trial. J Am Coll Cardiol 49:1272–1278. doi:10.1016/j.jacc.2007.02.025

    Article  CAS  PubMed  Google Scholar 

  61. De Penta PA, Polisca P, Tomai F et al (1999) Recovery of LV contractility in man is enhanced by preischemic administration of enflurane. Ann Thorac Surg 68:112–118

    Article  Google Scholar 

  62. Piot C, Croisille P, Staat P et al (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359:473–481. doi:10.1056/NEJMoa071142

    Article  CAS  PubMed  Google Scholar 

  63. Pleym H, Stenseth R, Wiseth R et al (2004) Supplemental remifentanil during coronary artery bypass grafting is followed by a transient postoperative cardiac depression. Acta Anaesthesiol Scand 48:1155–1162. doi:10.1111/j.1399-6576.2004.00474.x

    Article  CAS  PubMed  Google Scholar 

  64. Preckel B, Schlack W, Comfère T et al (1998) Effects of enflurane, isoflurane, sevoflurane and desflurane on reperfusion injury after regional myocardial ischaemia in the rabbit heart in vivo. Br J Anaesth 81:905–912

    Article  CAS  PubMed  Google Scholar 

  65. Preckel B, Weber NC, Sanders RD et al (2006) Molecular mechanisms transducing the anesthetic, analgesic, and organ-protective actions of xenon. Anesthesiology 105:187–197

    Article  PubMed  Google Scholar 

  66. Rahman IA, Mascaro JG, Steeds RP et al (2010) Remote ischemic preconditioning in human coronary artery bypass surgery: from promise to disappointment? Circulation, 53–59. doi:10.1161/CIRCULATIONAHA.109.926667

    Article  Google Scholar 

  67. Reffelmann T, Kloner RA (2009) Phosphodiesterase 5 inhibitors: are they cardioprotective? Cardiovasc Res 83:204–212. doi:10.1093/cvr/cvp170

    Article  CAS  PubMed  Google Scholar 

  68. Sá MPBO, Rueda FG, Ferraz PE et al (2012) Is there any difference between blood and crystalloid cardioplegia for myocardial protection during cardiac surgery? A meta-analysis of 5576 patients from 36 randomized trials. Perfusion 27:535–546. doi:10.1177/0267659112453754

    Article  PubMed  Google Scholar 

  69. Schultz JE, Hsu AK, Gross GJ (1996) Morphine mimics the cardioprotective effect of ischemic preconditioning via a glibenclamide-sensitive mechanism in the rat heart. Circ Res 78:1100–1104

    Article  CAS  PubMed  Google Scholar 

  70. Schulz R, Kelm M, Heusch G (2004) Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61:402–413. doi:10.1016/j.cardiores.2003.09.019

    Article  CAS  PubMed  Google Scholar 

  71. Schwartz BG, Levine LA, Comstock G et al (2012) Cardiac uses of phosphodiesterase-5 inhibitors. J Am Coll Cardiol 59:9–15. doi:10.1016/j.jacc.2011.07.051

    Article  CAS  PubMed  Google Scholar 

  72. Selker HP, Beshansky JR, Sheehan PR et al (2012) Out-of-hospital administration of intravenous glucose-insulin-potassium in patients with suspected acute coronary syndromes: the IMMEDIATE randomized controlled trial. JAMA 307:1925–1933. doi:10.1001/jama.2012.426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Smit KF, Oei GTML, Brevoord D et al (2013) Helium induces preconditioning in human endothelium in vivo. Anesthesiology 118:95–104. doi:10.1097/ALN.0b013e3182751300

    Article  PubMed  Google Scholar 

  74. Smit KF, Weber NC, Hollmann MW, Preckel B (2015) Noble gases as cardioprotectants - translatability and mechanism. Br J Pharmacol 172:2062–2073. doi:10.1111/bph.12994

    Article  CAS  PubMed  Google Scholar 

  75. Stoppe C, Coburn M, Fahlenkamp A et al (2015) Elevated serum concentrations of erythropoietin after xenon anaesthesia in cardiac surgery: secondary analysis of a randomized controlled trial. Br J Anaesth 114:701–703. doi:10.1093/bja/aev060

    Article  CAS  PubMed  Google Scholar 

  76. Stoppe C, Fahlenkamp AV, Rex S et al (2013) Feasibility and safety of xenon compared with sevoflurane anaesthesia in coronary surgical patients: a randomized controlled pilot study. Br J Anaesth 111:406–416. doi:10.1093/bja/aet072

    Article  CAS  PubMed  Google Scholar 

  77. Stoppe C, Rex S, Goetzenich A et al (2015) Interaction of MIF Family Proteins in Myocardial Ischemia/Reperfusion Damage and Their Influence on Clinical Outcome of Cardiac Surgery Patients. Antioxid Redox Signal. doi:10.1089/ars.2014.6243

    PubMed  PubMed Central  Google Scholar 

  78. Tanaka K, Weihrauch D, Kehl F et al (2002) Mechanism of preconditioning by isoflurane in rabbits: a direct role for reactive oxygen species. Anesthesiology 97:1485–1490

    Article  CAS  PubMed  Google Scholar 

  79. Vilahur G, Casaní L, Peña E et al (2009) Induction of RISK by HMG-CoA reductase inhibition affords cardioprotection after myocardial infarction. Atherosclerosis 206:95–101. doi:10.1016/j.atherosclerosis.2009.02.009

    Article  CAS  PubMed  Google Scholar 

  80. Weisser J, Martin J, Bisping E et al (2001) Influence of mild hypothermia on myocardial contractility and circulatory function. Basic Res Cardiol 96:198–205

    Article  CAS  PubMed  Google Scholar 

  81. Wong GTC, Huang Z, Ji S, Irwin MG (2010) Remifentanil reduces the release of biochemical markers of myocardial damage after coronary artery bypass surgery: a randomized trial. J Cardiothorac Vasc Anesth 24(012):790–796. doi:10.1053/j.jvca

    Article  CAS  PubMed  Google Scholar 

  82. Xu Z‑D, Jin M, He W‑X et al (2009) Remifentanil preconditioning lowers cardiac troponin I levels in patients undergoing off-pump coronary artery bypass graft surgery. Nan Fang Yi Ke Da Xue Xue Bao 29:1554–1556

    CAS  PubMed  Google Scholar 

  83. Yamakura T, Harris RA (2000) Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated ion channels. Comparison with isoflurane and ethanol. Anesthesiology 93:1095–1101

    Article  CAS  PubMed  Google Scholar 

  84. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135. doi:10.1056/NEJMra071667

    Article  CAS  PubMed  Google Scholar 

  85. Yu CH, Beattie WS (2006) Les effets des anesthésiques volatils sur les complications ischémiques et la mortalité cardiaques pendant le PAC: une méta-analyse. Can J Anesth/J. Can Anesth 53:906–918. doi:10.1007/BF03022834

    Article  Google Scholar 

  86. Zeng J, He W, Qu Z et al (2014) Cold blood versus crystalloid cardioplegia for myocardial protection in adult cardiac surgery: a meta-analysis of randomized controlled studies. J Cardiothorac Vasc Anesth 28(005):674–681. doi:10.1053/j.jvca

    Article  PubMed  Google Scholar 

  87. Zeriouh M, Heider A, Rahmanian PB et al (2015) Six-years survival and predictors of mortality after CABG using cold vs. warm blood cardioplegia in elective and emergent settings. J Cardiothorac Surg 10:849 doi:10.1186/s13019-015-0384-9

    Article  Google Scholar 

  88. Zhang H‑X, Zang Y‑M, Huo J‑H et al (2006) Physiologically tolerable insulin reduces myocardial injury and improves cardiac functional recovery in myocardial ischemic/reperfused dogs. J Cardiovasc Pharmacol 48:306–313. doi:10.1097/01.fjc.0000249873.73197.c3

    Article  CAS  PubMed  Google Scholar 

  89. Zhang HF, Fan Q, Qian XX et al (2004) Role of insulin in the anti-apoptotic effect of glucose-insulin-potassium in rabbits with acute myocardial ischemia and reperfusion. Apoptosis 9:777–783. doi:10.1023/B:APPT.0000045796.58715.82

    Article  CAS  PubMed  Google Scholar 

  90. Zhu P, Lu L, Xu Y et al (2000) Glucose-insulin-potassium preserves systolic and diastolic function in ischemia and reperfusion in pigs. Am J Physiol Heart Circ Physiol 278:H595–603

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Heusch G, Kleinbongard P, Böse D et al (2009) Coronary microembolization: from bedside to bench and back to bedside. Circulation 120:1822–1836. doi:10.1161/CIRCULATIONAHA.109.888784

    Article  PubMed  Google Scholar 

Download references

Danksagung

Wir danken Dr. Lutz Kuntzsch (Gesellschaft für deutsche Sprache e. V.) für die freundliche Unterstützung bei der Erstellung dieses Manuskriptes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Stoppe.

Ethics declarations

Interessenkonflikt

C. Stoppe gibt an, dass er durch die Deutsche Forschungsgemeinschaft unterstützt wird (STO 1099/ 2‑1). Darüber hinaus ist C. Stoppe in der Vergangenheit als Referent für die Firma biosyn Arzneimittel GmbH (Fellbach) sowie für die Firma Air Liquide (Paris) tätig gewesen. A. Goetzenich gibt an, dass er als Referent für die Firma biosyn Arzneimittel GmbH (Fellbach) tätig war. M. Coburn gibt an, dass er in der Vergangenheit Beraterhonorar von der Firma Air Liquide erhalten hat. P. Meybohm gibt an, dass kein Interessenskonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoppe, C., Meybohm, P., Coburn, M. et al. Kardioprotektion beim herzchirurgischen Patienten. Anaesthesist 65, 169–182 (2016). https://doi.org/10.1007/s00101-016-0141-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-016-0141-z

Schlüsselwörter

Keywords

Navigation