Skip to main content
Log in

Mechanische Reanimationshilfen

Mechanical resuscitation assist devices

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Hochgerechnet erleiden in Deutschland pro Jahr zwischen 100.000 und 160.000 Menschen einen plötzlichen Herztod außerhalb des Krankenhauses. Die Häufigkeit einer Reanimationsbehandlung („cardiopulmonary resuscitation“, CPR) nach plötzlichem Herztod beträgt je nach Notarztdienst 30–90 begonnene Reanimationsmaßnahmen/100.000 Einwohner und Jahr. Hierbei sind die Basismaßnahmen – Thoraxkompression und Beatmung – die Kernstücke der CPR. Frühzeitiger Beginn und Qualität der Ausführung sind entscheidend für den Reanimationserfolg. Selbst professionelle Helfer sind nicht immer in der Lage, die notwendige Qualität der CPR-Maßnahmen zu gewährleisten. Konsequenterweise sind in den letzten Jahren viele mechanische Reanimationshilfen entwickelt worden, um die Thoraxkompression und den daraus resultierenden passiven Notkreislauf zu optimieren. Im vorliegenden Leitthemenbeitrag werden die derzeit in Deutschland verfügbaren mechanischen Reanimationshilfen vorgestellt, erläutert und wissenschaftlich im Kontext mit der verfügbaren Literatur bewertet.

Abstract

In Germany 100,000–160,000 people suffer from out-of-hospital cardiac arrest (OHCA) annually. The incidence of cardiopulmonary resuscitation (CPR) after OHCA varies between emergency ambulance services but is in the range of 30–90 CPR attempts per 100,000 inhabitants per year. Basic life support (BLS) involving chest compressions and ventilation is the key measure of resuscitation. Rapid initiation and quality of BLS are the most critical factors for CPR success. Even healthcare professionals are not always able to ensure the quality of CPR measures. Consequently in recent years mechanical resuscitation devices have been developed to optimize chest compression and the resulting circulation. In this article the mechanical resuscitation devices currently available in Germany are discussed and evaluated scientifically in context with available literature. The ANIMAX CPR device should not be used outside controlled trials as no clinical results have so far been published. The same applies to the new device Corpuls CPR which will be available on the market in early 2014. Based on the current published data a general recommendation for the routine use of LUCAS™ and AutoPulse® CPR cannot be given. The preliminary data of the CIRC trial and the published data of the LINC trial revealed that mechanical CPR is apparently equivalent to good manual CPR. For the final assessment further publications of large randomized studies must be analyzed (e.g. the CIRC and PaRAMeDIC trials). However, case control studies, case series and small studies have already shown that in special situations and in some cases patients will benefit from the automatic mechanical resuscitation devices (LUCAS™, AutoPulse®). This applies especially to emergency services where standard CPR quality is far below average and for patients who require prolonged CPR under difficult circumstances. This might be true in cases of resuscitation due to hypothermia, intoxication and pulmonary embolism as well as for patients requiring transport or coronary intervention when cardiac arrest persists. Three prospective randomized studies and the resulting meta-analysis are available for active compression-decompression resuscitation (ACD-CPR) in combination with an impedance threshold device (ITD). These studies compared ACD-ITD-CPR to standard CPR and clearly demonstrated that ACD-ITD-CPR is superior to standard CPR concerning short and long-term survival with good neurological recovery after OHCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Fischer M, Ihli M, Messelken M (2010) Mechanische Reanimationsgeräte. Notfall Rettungsmed 13:189–196

    Google Scholar 

  2. Arntz HR, Willich SN, Schreiber C et al (2000) Diurnal, weekly and seasonal variation of sudden death. Population-based analysis of 24,061 consecutive cases. Eur Heart J 21:315–320

    CAS  PubMed  Google Scholar 

  3. Fischer M, Fischer NJ, Schuttler J (1997) One-year survival after out-of-hospital cardiac arrest in Bonn city: outcome report according to the „Utstein style“. Resuscitation 33:233–243

    CAS  PubMed  Google Scholar 

  4. Berdowski J, Berg RA, Tijssen JG, Koster RW (2010) Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation 81:1479–1487

    PubMed  Google Scholar 

  5. Fischer M, Kamp J, Garcia-Castrillo Riesgo L et al (2011) Comparing emergency medical service systems – a project of the European Emergency Data (EED) Project. Resuscitation 82:285–293

    PubMed  Google Scholar 

  6. Fischer M, Krep H, Wierich D et al (2003) Effektivitäts- und Effizienzvergleich der Rettungsdienstsysteme in Birmingham (UK) und Bonn (D). Anasthesiol Intensivmed Notfallmed Schmerzther 38:630–642

    CAS  PubMed  Google Scholar 

  7. Herlitz J, Bahr J, Fischer M et al (1999) Resuscitation in Europe: a tale of five European regions. Resuscitation 41:121–131

    CAS  PubMed  Google Scholar 

  8. Neukamm J, Graesner JT, Schewe JC et al (2011) The impact of response time reliability on CPR incidence and resuscitation success – a benchmark study from the German Resuscitation Registry. Crit Care 15:R282

    PubMed Central  PubMed  Google Scholar 

  9. Atwood C, Eisenberg MS, Herlitz J, Rea TD (2005) Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation 67:75–80

    PubMed  Google Scholar 

  10. Messelken M, Kehrberger E, Dirks B, Fischer M (2010) The quality of emergency medical care in Baden-Wurttemberg (Germany): four years in focus. Dtsch Arztebl Int 107:523–530

    PubMed Central  PubMed  Google Scholar 

  11. Fischer M, Messelken M, Wnent J et al (2013) Deutsches Reanimationsregister der DGAI. Notfall Rettungsmed 16:251–259

    Google Scholar 

  12. Yakaitis RW, Ewy GA, Otto CW et al (1980) Influence of time and therapy on ventricular defibrillation in dogs. Crit Care Med 8:157–163

    CAS  PubMed  Google Scholar 

  13. Palmer BS, Hadziahmetovic M, Veci T, Angelos MG (2004) Global ischemic duration and reperfusion function in the isolated perfused rat heart. Resuscitation 62:97–106

    PubMed  Google Scholar 

  14. Koster RW, Sayre MR, Botha M et al (2010) Part 5: adult basic life support: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation 81(Suppl 1):e48–e70

    PubMed  Google Scholar 

  15. Wik L, Kramer-Johansen J, Myklebust H et al (2005) Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 293:299–304

    CAS  PubMed  Google Scholar 

  16. Abella BS, Sandbo N, Vassilatos P et al (2005) Chest compression rates during cardiopulmonary resuscitation are suboptimal: a prospective study during in-hospital cardiac arrest. Circulation 111:428–434

    PubMed  Google Scholar 

  17. Pernat A, Weil MH, Sun S, Tang W (2003) Stroke volumes and end-tidal carbon dioxide generated by precordial compression during ventricular fibrillation. Crit Care Med 31:1819–1823

    PubMed  Google Scholar 

  18. Bartlett RL, Stewart NJ Jr, Raymond J et al (1984) Comparative study of three methods of resuscitation: closed-chest, open-chest manual, and direct mechanical ventricular assistance. Ann Emerg Med 13:773–777

    CAS  PubMed  Google Scholar 

  19. Fischer M, Dahmen A, Standop J et al (2002) Effects of hypertonic saline on myocardial blood flow in a porcine model of prolonged cardiac arrest. Resuscitation 54:269–280

    CAS  PubMed  Google Scholar 

  20. Brooks SC, Bigham BL, Morrison LJ (2011) Mechanical versus manual chest compressions for cardiac arrest. Cochrane Database Syst Rev:CD007260

    Google Scholar 

  21. Halperin H, Berger R, Chandra N et al (2000) Cardiopulmonary resuscitation with a hydraulic-pneumatic band. Crit Care Med 28(Suppl 11):N203–N206

    CAS  PubMed  Google Scholar 

  22. Halperin HR, Tsitlik JE, Gelfand M et al (1993) A preliminary study of cardiopulmonary resuscitation by circumferential compression of the chest with use of a pneumatic vest. N Engl J Med 329:762–768

    CAS  PubMed  Google Scholar 

  23. Halperin HR, Guerci AD, Chandra N et al (1986) Vest inflation without simultaneous ventilation during cardiac arrest in dogs: improved survival from prolonged cardiopulmonary resuscitation. Circulation 74:1407–1415

    CAS  PubMed  Google Scholar 

  24. Mauer DK, Nolan J, Plaisance P et al (1999) Effect of active compression-decompression resuscitation (ACD-CPR) on survival: a combined analysis using individual patient data. Resuscitation 41:249–256

    CAS  PubMed  Google Scholar 

  25. Skogvoll E, Wik L (1999) Active compression-decompression cardiopulmonary resuscitation: a population-based, prospective randomised clinical trial in out-of-hospital cardiac arrest. Resuscitation 42:163–172

    CAS  PubMed  Google Scholar 

  26. Klintschar M, Darok M, Radner H (1998) Massive injury to the heart after attempted active compression-decompression cardiopulmonary resuscitation. Int J Legal Med 111:93–96

    CAS  PubMed  Google Scholar 

  27. Plaisance P, Adnet F, Vicaut E et al (1997) Benefit of active compression-decompression cardiopulmonary resuscitation as a prehospital advanced cardiac life support: a randomized multicenter study. Circulation 95:955–961

    CAS  PubMed  Google Scholar 

  28. Panzer W, Bretthauer M, Klingler H et al (1996) ACD versus standard CPR in a prehospital setting. Resuscitation 33:117–124

    CAS  PubMed  Google Scholar 

  29. Mauer D, Schneider T, Dick W et al (1996) Active compression-decompression resuscitation: a prospective, randomized study in a two-tiered EMS system with physicians in the field. Resuscitation 33:125–134

    CAS  PubMed  Google Scholar 

  30. Stiell IG, Hebert PC, Wells GA et al (1996) The Ontario trial of active compression-decompression cardiopulmonary resuscitation for in-hospital and prehospital cardiac arrest. JAMA 275:1417–1423

    CAS  PubMed  Google Scholar 

  31. Luiz T, Ellinger K, Denz C (1996) Active compression-decompression cardiopulmonary resuscitation does not improve survival in patients with prehospital cardiac arrest in a physician-manned emergency medical system. J Cardiothorac Vasc Anesth 10:178–186

    CAS  PubMed  Google Scholar 

  32. Schwab TM, Callaham ML, Madsen CD, Utecht TA (1995) A randomized clinical trial of active compression-decompression CPR vs standard CPR in out-of-hospital cardiac arrest in two cities. JAMA 273:1261–1268

    CAS  PubMed  Google Scholar 

  33. Cohen T, Goldner B, Maccaro P et al (1993) A comparison of active compression-decompression cardiopulmonary resuscitation with standard cardiopulmonary resuscitation for cardiac arrests occurring in the hospital. N Engl J Med 329:1918–1921

    CAS  PubMed  Google Scholar 

  34. Lafuente-Lafuente C, Melero-Bascones M (2002) Active chest compression-decompression for cardiopulmonary resuscitation. Cochrane Database Syst Rev 3:CD002751

    PubMed  Google Scholar 

  35. Aufderheide TP, Lurie KG (2006) Vital organ blood flow with the impedance threshold device. Crit Care Med 34(12 Suppl):466–473

    Google Scholar 

  36. Aufderheide TP, Nichol G, Rea TD et al (2011) A trial of an impedance threshold device in out-of-hospital cardiac arrest. N Engl J Med 365:798–806

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Greco M, Landoni G, Cabrini L (2012) An impedance threshold device in out-of-hospital cardiac arrest. N Engl J Med 366:186

    CAS  PubMed  Google Scholar 

  38. Plaisance P, Lurie KG, Vicaut E et al (2004) Evaluation of an impedance threshold device in patients receiving active compression-decompression cardiopulmonary resuscitation for out of hospital cardiac arrest. Resuscitation 61:265–271

    PubMed  Google Scholar 

  39. Wolcke BB, Mauer DK, Schoefmann MF et al (2003) Comparison of standard cardiopulmonary resuscitation versus the combination of active compression-decompression cardiopulmonary resuscitation and an inspiratory impedance threshold device for out-of-hospital cardiac arrest. Circulation 108:2201–2205

    PubMed  Google Scholar 

  40. ECC Committee, Subcommittees and Task Forces of the American Heart Association (2005) 2005 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 112(24 Suppl):IV1–lV203

    Google Scholar 

  41. Aufderheide TP, Frascone RJ, Wayne MA et al (2011) Standard cardiopulmonary resuscitation versus active compression-decompression cardiopulmonary resuscitation with augmentation of negative intrathoracic pressure for out-of-hospital cardiac arrest: a randomised trial. Lancet 377:301–311

    PubMed Central  PubMed  Google Scholar 

  42. Frascone RJ, Wayne MA, Swor RA et al (2013) Treatment of non-traumatic out-of-hospital cardiac arrest with active compression decompression cardiopulmonary resuscitation plus an impedance threshold device. Resuscitation 84:1214–1222

    PubMed  Google Scholar 

  43. Rubertsson S, Lindgren E, Smekal D et al (2013) Mechanical chest compressions and simultaneous defibrillation vs conventional cardiopulmonary resuscitation in out-of-hospital cardiac arrest: the LINC randomized trial. JAMA. DOI 10.1001/jama.2013.282538

  44. Perkins GD, Woollard M, Cooke MW et al (2010) Prehospital randomised assessment of a mechanical compression device in cardiac arrest (PaRAMeDIC) trial protocol. Scand J Trauma Resusc Emerg Med 18:58

    PubMed Central  PubMed  Google Scholar 

  45. Axelsson C, Nestin J, Svensson L et al (2006) Clinical consequences of the introduction of mechanical chest compression in the EMS system for treatment of out-of-hospital cardiac arrest –a pilot study. Resuscitation 71:47–55

    PubMed  Google Scholar 

  46. Smekal D, Johansson J, Huzevka T, Rubertsson S (2011) A pilot study of mechanical chest compressions with the LUCAS device in cardiopulmonary resuscitation. Resuscitation 82:702–706

    PubMed  Google Scholar 

  47. Smekal D, Johansson J, Huzevka T, Rubertsson S (2009) No difference in autopsy detected injuries in cardiac arrest patients treated with manual chest compressions compared with mechanical compressions with the LUCAS device – a pilot study. Resuscitation 80:1104–1107

    PubMed  Google Scholar 

  48. Larsen AI, Hjornevik AS, Ellingsen CL, Nilsen DW (2007) Cardiac arrest with continuous mechanical chest compression during percutaneous coronary intervention. A report on the use of the LUCAS device. Resuscitation 75:454–459

    PubMed  Google Scholar 

  49. Steen S, Liao Q, Pierre L et al (2002) Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation. Resuscitation 55:285–299

    PubMed  Google Scholar 

  50. Wagner H, Terkelsen CJ, Friberg H et al (2010) Cardiac arrest in the catheterisation laboratory: a 5-year experience of using mechanical chest compressions to facilitate PCI during prolonged resuscitation efforts. Resuscitation 81:383–387

    PubMed  Google Scholar 

  51. Bonnemeier H, Olivecrona G, Simonis G et al (2009) Automated continuous chest compression for in-hospital cardiopulmonary resuscitation of patients with pulseless electrical activity: a report of five cases. Int J Cardiol 136:e39–e50

    PubMed  Google Scholar 

  52. Steen S, Liao Q, Pierre L et al (2004) Continuous intratracheal insufflation of oxygen improves the efficacy of mechanical chest compression-active decompression CPR. Resuscitation 62:219–227

    PubMed  Google Scholar 

  53. Deakin CD, O’Neill JF, Tabor T (2007) Does compression-only cardiopulmonary resuscitation generate adequate passive ventilation during cardiac arrest? Resuscitation 75:53–59

    PubMed  Google Scholar 

  54. Bonnemeier H, Simonis G, Olivecrona G et al (2011) Continuous mechanical chest compression during in-hospital cardiopulmonary resuscitation of patients with pulseless electrical activity. Resuscitation 82:155–159

    PubMed  Google Scholar 

  55. Putzer G, Braun P, Zimmermann A et al (2013) LUCAS compared to manual cardiopulmonary resuscitation is more effective during helicopter rescue – a prospective, randomized, cross-over manikin study. Am J Emerg Med 31:384–389

    PubMed  Google Scholar 

  56. Ventzke MM, Gassler H, Lampl L, Helm M (2013) Cardio pump reloaded: in-hospital resuscitation during transport. Intern Emerg Med 8:621–626

    PubMed  Google Scholar 

  57. Gassler H, Ventzke MM, Lampl L, Helm M (2013) Transport with ongoing resuscitation: a comparison between manual and mechanical compression. Emerg Med J 30:589–592

    PubMed  Google Scholar 

  58. Holmstrom P, Boyd J, Sorsa M, Kuisma M (2005) A case of hypothermic cardiac arrest treated with an external chest compression device (LUCAS) during transport to re-warming. Resuscitation 67:139–141

    PubMed  Google Scholar 

  59. Casner M, Andersen D, Isaacs SM (2005) The impact of a new CPR assist device on rate of return of spontaneous circulation in out-of-hospital cardiac arrest. Prehosp Emerg Care 9:61–67

    PubMed  Google Scholar 

  60. Halperin HR, Paradis N, Ornato JP et al (2004) Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms. J Am Coll Cardiol 44:2214–2220

    PubMed  Google Scholar 

  61. Timerman S, Cardoso LF, Ramires JA, Halperin H (2004) Improved hemodynamic performance with a novel chest compression device during treatment of in-hospital cardiac arrest. Resuscitation 61:273–280

    PubMed  Google Scholar 

  62. Ong ME, Ornato JP, Edwards DP et al (2006) Use of an automated, load-distributing band chest compression device for out-of-hospital cardiac arrest resuscitation. JAMA 295:2629–2637

    CAS  PubMed  Google Scholar 

  63. Hallstrom A, Rea TD, Sayre MR et al (2006) Manual chest compression vs use of an automated chest compression device during resuscitation following out-of-hospital cardiac arrest: a randomized trial. JAMA 295:2620–2628

    CAS  PubMed  Google Scholar 

  64. Duchateau FX, Gueye P, Curac S et al (2010) Effect of the AutoPulse automated band chest compression device on hemodynamics in out-of-hospital cardiac arrest resuscitation. Intensive Care Med 36:1256–1260

    PubMed Central  PubMed  Google Scholar 

  65. Liu QY, Li CS (2010) The effect of the external chest compression appliance (AutoPulse) on cardiac arrest in the emergency department and influence on blood gas and N-terminal B-type natriuretic peptide. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 22:660–662

    CAS  PubMed  Google Scholar 

  66. Krep H, Mamier M, Breil M et al (2007) Out-of-hospital cardiopulmonary resuscitation with the AutoPulse system: a prospective observational study with a new load-distributing band chest compression device. Resuscitation 73:86–95

    PubMed  Google Scholar 

  67. Risom M, Jorgensen H, Rasmussen LS, Sorensen AM (2010) Resuscitation, prolonged cardiac arrest, and an automated chest compression device. J Emerg Med 38:481–483

    PubMed  Google Scholar 

  68. Morozumi J, Sakurai E, Matsuno N et al (2009) Successful kidney transplantation from donation after cardiac death using a load-distributing-band chest compression device during long warm ischemic time. Resuscitation 80:278–280

    PubMed  Google Scholar 

  69. Jennings PA, Harriss L, Bernard S et al (2012) An automated CPR device compared with standard chest compressions for out-of-hospital resuscitation. BMC Emerg Med 12:8

    PubMed Central  PubMed  Google Scholar 

  70. Schewe JC, Heister U, Hoeft A, Krep H (2008) Emergency physician and AutoPulse – a good duo in preclinical emergency services?: case example and report on experience. Anaesthesist 57:582–588

    PubMed  Google Scholar 

  71. Lerner EB, Persse D, Souders CM et al (2011) Design of the Circulation Improving Resuscitation Care (CIRC) Trial: a new state of the art design for out-of-hospital cardiac arrest research. Resuscitation 82:294–299

    PubMed  Google Scholar 

  72. Vaillancourt C, Everson-Stewart S, Christenson J et al (2011) The impact of increased chest compression fraction on return of spontaneous circulation for out-of-hospital cardiac arrest patients not in ventricular fibrillation. Resuscitation 82:1501–1507

    PubMed Central  PubMed  Google Scholar 

  73. Cheskes S, Schmicker RH, Christenson J et al (2011) Perishock pause: an independent predictor of survival from out-of-hospital shockable cardiac arrest. Circulation 124:58–66

    PubMed Central  PubMed  Google Scholar 

  74. Stiell IG, Nichol G, Leroux BG et al (2011) Early versus later rhythm analysis in patients with out-of-hospital cardiac arrest. N Engl J Med 365:787–797

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Ong ME, Quah JL, Annathurai A et al (2013) Improving the quality of cardiopulmonary resuscitation by training dedicated cardiac arrest teams incorporating a mechanical load-distributing device at the emergency department. Resuscitation 84:508–514

    PubMed  Google Scholar 

  76. Fischer H, Zapletal B, Neuhold S et al (2012) Single rescuer exertion using a mechanical resuscitation device: a randomized controlled simulation study. Acad Emerg Med 19:1242–1247

    PubMed  Google Scholar 

  77. Fischer H, Neuhold S, Zapletal B et al (2011) A manually powered mechanical resuscitation device used by a single rescuer: a randomised controlled manikin study. Resuscitation 82:913–919

    PubMed  Google Scholar 

  78. Pfeiffer TE, Klaus (2009) Vergleich von Thoraxkompressionen einer manuellen Kardiopulmonalen Reanimation mit einer Reanimation mithilfe des mechanischen Gerätes ANIMAX am Simulator. Dissertation, Ruprecht-Karls-Universität, Heidelberg

  79. Hoke RS, Chamberlain D (2004) Skeletal chest injuries secondary to cardiopulmonary resuscitation. Resuscitation 63:327–338

    PubMed  Google Scholar 

  80. Adams HA, Schmitz CS, Block G, Schlichting C (1995) Intra-abdominal bleeding after myocardial infarction with cardiopulmonary resuscitation and thrombolytic therapy. Anaesthesist 44:585–589

    CAS  PubMed  Google Scholar 

  81. Kern KB, Carter AB, Showen RL et al (1986) CPR-induced trauma: comparison of three manual methods in an experimental model. Ann Emerg Med 15:674–679

    CAS  PubMed  Google Scholar 

  82. Camden JR, Carucci LR (2011) Liver injury diagnosed on computed tomography after use of an automated cardiopulmonary resuscitation device. Emerg Radiol 18:429–431

    PubMed  Google Scholar 

  83. Kouzu H, Hase M, Kokubu N et al (2010) Delayed visceral bleeding from liver injury after cardiopulmonary resuscitation. J Emerg Med 43:e245–e248

    PubMed  Google Scholar 

  84. Nolan JP, Deakin CD, Soar J et al (2005) European Resuscitation Council Guidelines for Resuscitation 2005 Section 4. Adult advanced life support. Resuscitation 67(Suppl 1):S39–S86

    PubMed  Google Scholar 

  85. Rabl W, Baubin M, Broinger G, Scheithauer R (1996) Serious complications from active compression-decompression cardiopulmonary resuscitation. Int J Legal Med 109:84–89

    CAS  PubMed  Google Scholar 

  86. Wind J, Bekkers SC, Hooren LJ van, Heurn LW van (2009) Extensive injury after use of a mechanical cardiopulmonary resuscitation device. Am J Emerg Med 27:1017 e1011–e1012

    PubMed  Google Scholar 

  87. Hart AP, Azar VJ, Hart KR, Stephens BG (2005) Autopsy artifact created by the Revivant AutoPulse resuscitation device. J Forensic Sci 50:164–168

    PubMed  Google Scholar 

  88. Oberladstaetter D, Braun P, Freund MC et al (2012) Autopsy is more sensitive than computed tomography in detection of LUCAS-CPR related non-dislocated chest fractures. Resuscitation 83:e89–e90

    PubMed  Google Scholar 

  89. Cohen TJ, Tucker KJ, Lurie KG et al (1992) Active compression-decompression. A new method of cardiopulmonary resuscitation. Cardiopulmonary Resuscitation Working Group. JAMA 267:2916–2923

    CAS  PubMed  Google Scholar 

  90. Lindner KH, Pfenninger EG, Lurie KG et al (1993) Effects of active compression-decompression resuscitation on myocardial and cerebral blood flow in pigs. Circulation 88:1254–1263

    CAS  PubMed  Google Scholar 

  91. Orliaguet GA, Carli PA, Rozenberg A et al (1995) End-tidal carbon dioxide during out-of-hospital cardiac arrest resuscitation: comparison of active compression-decompression and standard CPR. Ann Emerg Med 25:48–51

    CAS  PubMed  Google Scholar 

  92. Chang MW, Coffeen P, Lurie KG et al (1994) Active compression-decompression CPR improves vital organ perfusion in a dog model of ventricular fibrillation. Chest 106:1250–1259

    CAS  PubMed  Google Scholar 

  93. Shultz JJ, Coffeen P, Sweeney M et al (1994) Evaluation of standard and active compression-decompression CPR in an acute human model of ventricular fibrillation. Circulation 89:684–693

    CAS  PubMed  Google Scholar 

  94. Lurie KG, Shultz JJ, Callaham ML et al (1994) Evaluation of active compression-decompression CPR in victims of out-of- hospital cardiac arrest. JAMA 271:1405–1411

    CAS  PubMed  Google Scholar 

  95. Axelsson C, Karlsson T, Axelsson AB, Herlitz J (2009) Mechanical active compression-decompression cardiopulmonary resuscitation (ACD-CPR) versus manual CPR according to pressure of end tidal carbon dioxide (P(ET)CO2) during CPR in out-of-hospital cardiac arrest (OHCA). Resuscitation 80:1099–1103

    CAS  PubMed  Google Scholar 

  96. Rubertsson S, Silfverstolpe J, Rehn L et al (2013) The study protocol for the LINC (LUCAS in cardiac arrest) study: a study comparing conventional adult out-of-hospital cardiopulmonary resuscitation with a concept with mechanical chest compressions and simultaneous defibrillation. Scand J Trauma Resusc Emerg Med 21:5

    PubMed Central  PubMed  Google Scholar 

  97. Shultz JJ, Mianulli MJ, Gisch TM et al (1995) Comparison of exertion required to perform standard and active compression-decompression cardiopulmonary resuscitation. Resuscitation 29:23–31

    CAS  PubMed  Google Scholar 

  98. Yost D, Phillips RH, Gonzales L et al (2012) Assessment of CPR interruptions from transthoracic impedance during use of the LUCAS mechanical chest compression system. Resuscitation 83:961–965

    PubMed  Google Scholar 

  99. Greisen J, Golbaekdal KI, Mathiassen ON, Ravn HB (2010) Prolonged mechanical cardiopulmonary resuscitation. Ugeskr Laeger 172:3191–3192

    PubMed  Google Scholar 

  100. Iwami T, Nichol G, Hiraide A et al (2009) Continuous improvements in „chain of survival“ increased survival after out-of-hospital cardiac arrests: a large-scale population-based study. Circulation 119:728–734

    PubMed  Google Scholar 

  101. Steinmetz J, Barnung S, Nielsen SL et al (2008) Improved survival after an out-of-hospital cardiac arrest using new guidelines. Acta Anaesthesiol Scand 52:908–913

    CAS  PubMed  Google Scholar 

  102. Werling M, Thoren AB, Axelsson C, Herlitz J (2007) Treatment and outcome in post-resuscitation care after out-of-hospital cardiac arrest when a modern therapeutic approach was introduced. Resuscitation 73:40–45

    CAS  PubMed  Google Scholar 

  103. Abella BS, Edelson DP, Kim S et al (2007) CPR quality improvement during in-hospital cardiac arrest using a real-time audiovisual feedback system. Resuscitation 73:54–61

    PubMed  Google Scholar 

  104. Sunde K, Pytte M, Jacobsen D et al (2007) Implementation of a standardised treatment protocol for post resuscitation care after out-of-hospital cardiac arrest. Resuscitation 73:29–39

    PubMed  Google Scholar 

  105. Lukas RP, Grasner JT, Seewald S et al (2012) Chest compression quality management and return of spontaneous circulation: a matched-pair registry study. Resuscitation 83:1212–1218

    PubMed  Google Scholar 

  106. Olasveengen TM, Sunde K, Brunborg C et al (2009) Intravenous drug administration during out-of-hospital cardiac arrest: a randomized trial. JAMA 302:2222–2229

    PubMed  Google Scholar 

  107. Jacobs IG, Finn JC, Jelinek GA et al (2011) Effect of adrenaline on survival in out-of-hospital cardiac arrest: a randomised double-blind placebo-controlled trial. Resuscitation 82:1138–1143

    CAS  PubMed  Google Scholar 

  108. Kudenchuk PJ, Cobb LA, Copass MK et al (1999) Amiodarone for resuscitation after out-of-hospital cardiac arrest due to ventricular fibrillation. N Engl J Med 341:871–878

    CAS  PubMed  Google Scholar 

  109. Grasner JT, Meybohm P, Caliebe A et al (2011) Postresuscitation care with mild therapeutic hypothermia and coronary intervention after out-of-hospital cardiopulmonary resuscitation: a prospective registry analysis. Crit Care 15:R61

    PubMed Central  PubMed  Google Scholar 

  110. Wnent J, Seewald S, Heringlake M et al (2012) Choice of hospital after out-of-hospital cardiac arrest – a decision with far-reaching consequences: a study in a large German city. Crit Care 16:R164

    PubMed Central  PubMed  Google Scholar 

  111. Tomte O, Andersen GO, Jacobsen D et al (2011) Strong and weak aspects of an established post-resuscitation treatment protocol A five-year observational study. Resuscitation 82:1186–1193

    PubMed  Google Scholar 

  112. Fischer M, Böttiger BW, Popov-Cenic S, Hossmann KA (1996) Thrombolysis using plasminogen activator and heparin reduces cerebral no-reflow after resuscitation from cardiac arrest: an experimental study in the cat. Intensive Care Med 22:1214–1223

    CAS  PubMed  Google Scholar 

  113. Fischer M, Hossmann KA (1996) Volume expansion during cardiopulmonary resuscitation reduces cerebral no-reflow. Resuscitation 32:227–240

    CAS  PubMed  Google Scholar 

  114. Fischer M, Hossmann KA (1995) No-reflow after cardiac arrest. Intensive Care Med 21:132–141

    CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Fischer, M. Breil, M. Ihli, M. Messelken, S. Rauch geben an, dass kein Interessenkonflikt besteht. J.-C. Schewe erhielt Referentenhonorare und Reisekostenerstattungen für wissenschaftliche Vortragstätigkeiten von der Fa. ZOLL Medical Deutschland. Alle Patienten, die über Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts zu identifizieren sind, haben hierzu ihre schriftliche Einwilligung gegeben. Im Fall von nichtmündigen Patienten liegt die Einwilligung eines Erziehungsberechtigten oder des gesetzlich bestellten Betreuers vor. Der Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fischer.

Additional information

Die vorliegende Arbeit „Mechanische Reanimationshilfen“ ist als Aktualisierung und Update des Beitrags „Mechanische Reanimationsgeräte“ (Notfall Rettungsmed 2010,13:189–196) zu verstehen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, M., Breil, M., Ihli, M. et al. Mechanische Reanimationshilfen. Anaesthesist 63, 186–197 (2014). https://doi.org/10.1007/s00101-013-2265-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-013-2265-8

Schlüsselwörter

Keywords

Navigation