Skip to main content
Log in

Inhalative Anästhetika

Inhaled anesthetics

  • CME Zertifizierte Fortbildung
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Als inhalative Anästhetika werden Narkotika bezeichnet, die im gasförmigen Zustand über die Lungen inhaliert und anschließend im Blut gelöst an ihren Wirkort transportiert werden. Diese Form der Anästhesie wurde bereits 1847, als Äthernarkose, erfolgreich demonstriert. Äthernarkosen sind heutzutage obsolet, und auch der Gebrauch von Lachgas ist in Deutschland rückläufig. Chemisch sind die meisten modernen Inhalationsanästhetika halogenierte Äthylmethyläther. Als Halogen dient dabei Fluor. Unerwünschte Arzneimittelwirkungen bestehen in der Verminderung der myokardialen Kontraktilität und des arteriellen Blutdrucks sowie der Herabsetzung des CO2- und hypoxieinduzierten Atemantriebs. Weitere Nebenwirkungen betreffen Lungen und Leber, sind aber selten und werden nicht durch diese Anästhetika selbst, sondern vielmehr durch toxische Metaboliten ausgelöst. Ein vielversprechendes Narkosemittel ist das Edelgas Xenon, da es viele der Anforderungen an ein ideales Narkosegas erfüllt.

Abstract

Inhaled anesthetics are inhaled via the lungs. They subsequently pass through the alveolocapillary membrane and diffuse into the blood to finally target the central nervous system and induce anesthesia. This principle of anesthesia induction was first described for diethylether in 1847. Nevertheless, the use of diethylether for anesthesia is obsolete and even the use of nitrous oxide (introduced for anesthesia in 1847) is declining in Germany. Almost all modern volatile anesthetics are halogenated methylethylethers in which fluorine is used as a halogen. All of these anesthetics depress myocardial contractility and induce hypotension. Depression of CO2 and hypoxia-induced respiration are other serious side effects. Further side effects are liver and kidney related but they are rare and not induced by anesthetics per se but preferentially by toxic metobolites. Another promising inhalative anesthetic is xenon which fulfils many aspects of an ideal inhalative anesthetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Rampil IJ, Laster MJ (1992) No correlation between quantitative electroencephalographic measurements and movement response to noxious stimuli during isoflurane anesthesia in rats. Anesthesiology 77:920–925

    Article  PubMed  CAS  Google Scholar 

  2. Sonner JM, Antognini JF, Dutton RC et al (2003) Inhaled anesthetics and immobility: mechanisms, mysteries, and minimum alveolar anesthetic concentration. Anesth Analg 97:718–740

    Article  PubMed  CAS  Google Scholar 

  3. Kissin I (1997) A concept for assessing interactions of general anesthetics. Anesth Analg 85:204–210

    PubMed  CAS  Google Scholar 

  4. Glass PS, Gan TJ, Howell S, Ginsberg B (1997) Drug interactions: volatile anesthetics and opioids. J Clin Anesth 9:18S–22S

    Article  PubMed  CAS  Google Scholar 

  5. Servin FS (2008) Update on pharmacology of hypnotic drugs. Curr Opin Anaesthesiol 21:473–477

    Article  PubMed  Google Scholar 

  6. Vahle-Hinz C, Detsch O (2002) What can in vivo electrophysiology in animal models tell us about mechanisms of anaesthesia? Br J Anaesth 89:123–142

    Article  PubMed  CAS  Google Scholar 

  7. Banks MI, Pearce RA (1999) Dual actions of volatile anesthetics on GABA(A) IPSCs: dissociation of blocking and prolonging effects. Anesthesiology 90:120–134

    Article  PubMed  CAS  Google Scholar 

  8. Sinner B, Becke K, Engelhard K (2013) Neurotoxizität von Allgemeinanästhesie im Kindesalter. Anaesthesist 62:91–100

    Article  PubMed  CAS  Google Scholar 

  9. Sanders RD, Weimann J, Maze M (2008) Biologic effects of nitrous oxide: a mechanistic and toxicologic review. Anesthesiology 109:707–722

    Article  PubMed  CAS  Google Scholar 

  10. Kendig JJ (2002) In vitro networks: subcortical mechanisms of anaesthetic action. Br J Anaesth 89:91–101

    Article  PubMed  CAS  Google Scholar 

  11. Agnew NM, Pennefather SH, Russell GN (2002) Isoflurane and coronary heart disease. Anaesthesia 57:338–347

    Article  PubMed  CAS  Google Scholar 

  12. Booker PD, Whyte SD, Ladusans EJ (2003) Long QT syndrome and anaesthesia. Br J Anaesth 90:349–366

    Article  PubMed  CAS  Google Scholar 

  13. Landoni G, Fochi O, Tritapepe L et al (2009) Cardiac protection by volatile anesthetics. A review. Minerva Anestesiol 75:269–273

    PubMed  CAS  Google Scholar 

  14. Belhomme D, Peynet J, Louzy M et al (1999) Evidence for preconditioning by isoflurane in coronary artery bypass graft surgery. Circulation 100:II340–II344

    Article  PubMed  CAS  Google Scholar 

  15. De Hert SG, Cromheecke S, ten Broecke PW et al (2003) Effects of propofol, desflurane, and sevoflurane on recovery of myocardial function after coronary surgery in elderly high-risk patients. Anesthesiology 99:314–323

    Article  Google Scholar 

  16. De Hert SG, Van Der Linden PJ, Cromheecke S et al (2004) Cardioprotective properties of sevoflurane in patients undergoing coronary surgery with cardiopulmonary bypass are related to the modalities of its administration. Anesthesiology 101:299–310

    Article  Google Scholar 

  17. Weber NC, Schlack W (2008) Inhalational anaesthetics and cardioprotection. Handb Exp Pharmacol (182):187–207

    Article  Google Scholar 

  18. Volta CA, Alvisi V, Petrini S et al (2005) The effect of volatile anesthetics on respiratory system resistance in patients with chronic obstructive pulmonary disease. Anesth Analg 100:348–353

    Article  PubMed  CAS  Google Scholar 

  19. Baumert JH, Reyle-Hahn M, Hecker K et al (2002) Increased airway resistance during xenon anaesthesia in pigs is attributed to physical properties of the gas. Br J Anaesth 88:540–545

    Article  PubMed  CAS  Google Scholar 

  20. Spracklin DK, Kharasch ED (1996) Evidence for metabolism of fluoromethyl 2,2-difluoro-1-(trifluoromethyl)vinyl ether (compound A), a sevoflurane degradation product, by cysteine conjugate beta-lyase. Chem Res Toxicol 9:696–702

    Article  PubMed  CAS  Google Scholar 

  21. Njoku DB, Greenberg RS, Bourdi M et al (2002) Autoantibodies associated with volatile anesthetic hepatitis found in the sera of a large cohort of pediatric anesthesiologists. Anesth Analg 94:243–249

    PubMed  Google Scholar 

  22. Rosenberg H, Davis M, James D et al (2007) Malignant hyperthermia. Orphanet J Rare Dis 2:21

    Article  PubMed  Google Scholar 

  23. Jordan BD, Wright EL (2010) Xenon as an anesthetic agent. AANA J 78:387–392

    PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Deile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deile, M., Damm, M. & Heller, A. Inhalative Anästhetika. Anaesthesist 62, 493–504 (2013). https://doi.org/10.1007/s00101-013-2175-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-013-2175-9

Schlüsselwörter

Keywords

Navigation