Skip to main content
Log in

Kardiopulmonaler Bypass in der Herzchirurgie

Cardiopulmonary bypass in cardiac surgery

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Der kardiopulmonale Bypass („cardiopulmonary bypass“, CPB) ist ein Standardverfahren der Herzchirurgie. Neben den therapeutischen Perspektiven, die dieses Verfahren eröffnet, ist es selbst Ausgangspunkt für systemische und organspezifische Komplikationen. Typische Organkomplikationen sind Herzinsuffizienz, renale und pulmonale Dysfunktionen, Gerinnungsalterationen sowie neurologische und kognitive Einschränkungen. Die immunologische Reaktion auf die extrakorporale Zirkulation (EKZ) löst eine systemische Inflammation aus, die häufig die Definitionskriterien eines „systemic inflammatory response syndrome“ (SIRS) erfüllt. Die wesentlichen Ursachen hierfür sind der Kontakt des Bluts zur künstlichen Oberfläche der Herz-Lungen-Maschine (HLM), der mechanische Stress, der auf die Blutbestandteile einwirkt, und das beträchtliche operative Trauma. Eine Vielzahl an technischen Veränderungen der HLM zielt auf eine Reduktion der Inflammationsreaktion durch den CPB ab. Aus operationstechnischen Gründen kann heute bei einem Großteil des kardiochirurgischen Operationsspektrums noch nicht auf eine EKZ verzichtet werden. Es werden jedoch kontinuierlich Verfahren entwickelt, die das Ziel verfolgen, das operative Trauma und die negativen Auswirkungen des CPB zu reduzieren. Als positiv haben sich diesbezüglich verkleinerte Systeme mit biokompatiblen Oberflächen erwiesen. Alternative Verfahren wie die koronarchirurgische „Off-pump“-Chirurgie reduzieren CPB-assoziierte Organkomplikationen, werden jedoch aufgrund systemspezifischer Limitationen die konventionelle Bypasschirurgie nicht ersetzen können.

Abstract

Cardiopulmonary bypass (CPB) is a standard procedure in cardiac surgery; however, apart from its therapeutic options a CPB might also initiate systemic and organ-specific complications, such as heart failure, renal and pulmonary dysfunction, impaired coagulation as well as neurological and cognitive dysfunction. The immunological response to the extracorporeal circulation generates systemic inflammation which often meets the definition of systemic inflammatory response syndrome (SIRS). The main inducers of SIRS are contact of blood with the artificial surfaces of the CPB, mechanical stress which affects the blood components and the extensive surgical trauma. Hence, a number of technical and surgical developments aim at reduction of the inflammatory response caused by the CPB. By reason of surgical demands, the majority of cardiothoracic procedures still depend on the use of CPB; however, there is an on-going development of new techniques trying to reduce the surgical trauma and the negative consequences of CPB. Here, minimized systems with biocompatible surfaces have been shown to be effective in attenuating the inflammatory response to CPB. Alternative procedures such as off-pump surgery may help to avoid CPB-associated complications but due to specific limitations will not replace conventional bypass surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Ahmed I, House CM, Nelson WB (2009) Predictors of inotrope use in patients undergoing concomitant coronary artery bypass graft (CABG) and aortic valve replacement (AVR) surgeries at separation from cardiopulmonary bypass (CPB). J Cardiothorac Surg 4:24

    PubMed  Google Scholar 

  2. Alghamdi AA, Latter DA (2006) Pulsatile versus nonpulsatile cardiopulmonary bypass flow: an evidence-based approach. J Card Surg 21:347–354

    PubMed  Google Scholar 

  3. Ali MS, Harmer M, Vaughan R (2000) Serum S100 protein as a marker of cerebral damage during cardiac surgery. Br J Anaesth 85:287–298

    PubMed  CAS  Google Scholar 

  4. Allan CK, Newburger JW, Mcgrath E et al (2010) The relationship between inflammatory activation and clinical outcome after infant cardiopulmonary bypass. Anesth Analg 111:1244–1251

    PubMed  Google Scholar 

  5. Andersen LW, Baek L, Degn H et al (1987) Presence of circulating endotoxins during cardiac operations. J Thorac Cardiovasc Surg 93:115–119

    PubMed  CAS  Google Scholar 

  6. Angelini GD, Taylor FC, Reeves BC et al (2002) Early and midterm outcome after off-pump and on-pump surgery in Beating Heart Against Cardioplegic Arrest Studies (BHACAS 1 and 2): a pooled analysis of two randomised controlled trials. Lancet 359:1194–1199

    PubMed  Google Scholar 

  7. Apostolakis EE, Koletsis EN, Baikoussis NG et al (2010) Strategies to prevent intraoperative lung injury during cardiopulmonary bypass. J Cardiothorac Surg 5:1

    PubMed  Google Scholar 

  8. Ascione R, Lloyd CT, Underwood MJ et al (2000) Inflammatory response after coronary revascularization with or without cardiopulmonary bypass. Ann Thorac Surg 69:1198–1204

    PubMed  CAS  Google Scholar 

  9. Asimakopoulos G (2001) Systemic inflammation and cardiac surgery: an update. Perfusion 16:353–360

    PubMed  CAS  Google Scholar 

  10. Asimakopoulos G, Smith PL, Ratnatunga CP et al (1999) Lung injury and acute respiratory distress syndrome after cardiopulmonary bypass. Ann Thorac Surg 68:1107–1115

    PubMed  CAS  Google Scholar 

  11. Bartels C, Gerdes A, Babin-Ebell J et al (2002) Cardiopulmonary bypass: evidence or experience based? J Thorac Cardiovasc Surg 124:20–27

    PubMed  Google Scholar 

  12. Bauer TL, Arepally G, Konkle BA et al (1997) Prevalence of heparin-associated antibodies without thrombosis in patients undergoing cardiopulmonary bypass surgery. Circulation 95:1242–1246

    PubMed  CAS  Google Scholar 

  13. Biancari F, Lahtinen J, Lepojarvi S et al (2003) Preoperative C-reactive protein and outcome after coronary artery bypass surgery. Ann Thorac Surg 76:2007–2012

    PubMed  Google Scholar 

  14. Biancari F, Rimpilainen R (2009) Meta-analysis of randomised trials comparing the effectiveness of miniaturised versus conventional cardiopulmonary bypass in adult cardiac surgery. Heart 95:964–969

    PubMed  CAS  Google Scholar 

  15. Bilgin YM, Brand A (2008) Transfusion-related immunomodulation: a second hit in an inflammatory cascade? Vox Sang 95:261–271

    PubMed  CAS  Google Scholar 

  16. Boeken U, Litmathe J, Feindt P et al (2005) Neurological complications after cardiac surgery: risk factors and correlation to the surgical procedure. Thorac Cardiovasc Surg 53:33–36

    PubMed  CAS  Google Scholar 

  17. Boldt J, Brenner T, Lehmann A et al (2003) Is kidney function altered by the duration of cardiopulmonary bypass? Ann Thorac Surg 75:906–912

    PubMed  Google Scholar 

  18. Bretschneider HJ (1980) Myocardial protection. Thorac Cardiovasc Surg 28:295–302

    PubMed  CAS  Google Scholar 

  19. Breuer T, Martin K, Wilhelm M et al (2009) The blood sparing effect and the safety of aprotinin compared to tranexamic acid in paediatric cardiac surgery. Eur J Cardiothorac Surg 35:167–171

    PubMed  Google Scholar 

  20. Brooker RF, Brown WR, Moody DM et al (1998) Cardiotomy suction: a major source of brain lipid emboli during cardiopulmonary bypass. Ann Thorac Surg 65:1651–1655

    PubMed  CAS  Google Scholar 

  21. Cha J, Wang Z, Ao L et al (2008) Cytokines link Toll-like receptor 4 signaling to cardiac dysfunction after global myocardial ischemia. Ann Thorac Surg 85:1678–1685

    PubMed  Google Scholar 

  22. Chai PJ, Williamson JA, Lodge AJ et al (1999) Effects of ischemia on pulmonary dysfunction after cardiopulmonary bypass. Ann Thorac Surg 67:731–735

    PubMed  CAS  Google Scholar 

  23. Chaney MA, Nikolov MP, Blakeman BP et al (2000) Protective ventilation attenuates postoperative pulmonary dysfunction in patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth 14:514–518

    PubMed  CAS  Google Scholar 

  24. Conlon PJ, Stafford-Smith M, White WD et al (1999) Acute renal failure following cardiac surgery. Nephrol Dial Transplant 14:1158–1162

    PubMed  CAS  Google Scholar 

  25. Das DK, Engelman RM, Liu X et al (1992) Oxygen-derived free radicals and hemolysis during open heart surgery. Mol Cell Biochem 111:77–86

    PubMed  CAS  Google Scholar 

  26. Diegeler A, Doll N, Rauch T et al (2000) Humoral immune response during coronary artery bypass grafting: a comparison of limited approach, off-pump-technique, and conventional cardiopulmonary bypass. Circulation 102:III95–100

    PubMed  CAS  Google Scholar 

  27. Edmunds LH Jr, Colman RW (2006) Thrombin during cardiopulmonary bypass. Ann Thorac Surg 82:2315–2322

    PubMed  Google Scholar 

  28. Elmistekawy EM, Rubens FD (2011) Deep hypothermic circulatory arrest: alternative strategies for cerebral perfusion. A review article. Perfusion 26(Suppl 1):27–34

    PubMed  Google Scholar 

  29. Fellahi JL, Gue X, Richomme X et al (2003) Short- and long-term prognostic value of postoperative cardiac troponin I concentration in patients undergoing coronary artery bypass grafting. Anesthesiology 99:270–274

    PubMed  CAS  Google Scholar 

  30. Fergusson DA, Hebert PC, Mazer CD et al (2008) A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med 358:2319–2331

    PubMed  CAS  Google Scholar 

  31. Fontes ML, Amar D, Kulak A et al (2009) Increased preoperative white blood cell count predicts postoperative atrial fibrillation after coronary artery bypass surgery. J Cardiothorac Vasc Anesth 23:484–487

    PubMed  CAS  Google Scholar 

  32. Gravlee RFD GP, Stammers AH, Ungerleider RM (2007) Cardiopulmonary bypass: principles and practice. Lippincott Williams & Wilkins, Philadelphia

  33. Gagnon J, Laporta D, Beique F et al (2010) Clinical relevance of ventilation during cardiopulmonary bypass in the prevention of postoperative lung dysfunction. Perfusion 25:205–210

    PubMed  Google Scholar 

  34. Gasz B, Lenard L, Racz B et al (2006) Effect of cardiopulmonary bypass on cytokine network and myocardial cytokine production. Clin Cardiol 29:311–315

    PubMed  CAS  Google Scholar 

  35. Gibbon JH Jr (1954) Application of a mechanical heart and lung apparatus to cardiac surgery. Minn Med 37:171–185

    PubMed  Google Scholar 

  36. Gravlee GP, Davis RF, Stammers AH, Ungerleider RM (2007) Cardiopulmonary bypass: principles and practice. Lippincott Williams & Wilkins, Philadelphia

  37. Grogan K, Stearns J, Hogue CW (2008) Brain protection in cardiac surgery. Anesthesiol Clin 26:521–538

    PubMed  Google Scholar 

  38. Groom RC, Quinn RD, Lennon P et al (2010) Microemboli from cardiopulmonary bypass are associated with a serum marker of brain injury. J Extra Corpor Technol 42:40–44

    PubMed  Google Scholar 

  39. Haase M, Bellomo R, Haase-Fielitz A (2010) Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. J Am Coll Cardiol 55:2024–2033

    PubMed  CAS  Google Scholar 

  40. Hashemzadeh K, Dehdilani M (2009) Postoperative cardiac troponin I is an independent predictor of in-hospital death after coronary artery bypass grafting. J Cardiovasc Surg (Torino) 50:403–409

    Google Scholar 

  41. Hedman A, Larsson PT, Alam M et al (2007) CRP, IL-6 and endothelin-1 levels in patients undergoing coronary artery bypass grafting. Do preoperative inflammatory parameters predict early graft occlusion and late cardiovascular events? Int J Cardiol 120:108–114

    PubMed  Google Scholar 

  42. Hoedemaekers C, Van Deuren M, Sprong T et al (2010) The complement system is activated in a biphasic pattern after coronary artery bypass grafting. Ann Thorac Surg 89:710–716

    PubMed  Google Scholar 

  43. Hogue CW Jr, Palin CA, Arrowsmith JE (2006) Cardiopulmonary bypass management and neurologic outcomes: an evidence-based appraisal of current practices. Anesth Analg 103:21–37

    PubMed  Google Scholar 

  44. Johnson D, Hurst T, Thomson D et al (1996) Respiratory function after cardiac surgery. J Cardiothorac Vasc Anesth 10:571–577

    PubMed  CAS  Google Scholar 

  45. Just SS, Muller T, Hartrumpf M et al (2006) First experience with closed circuit/centrifugal pump extracorporeal circulation: cellular trauma, coagulatory, and inflammatory response. Interact Cardiovasc Thorac Surg 5:646–648

    PubMed  Google Scholar 

  46. Karkouti K, Beattie WS, Wijeysundera DN et al (2005) Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. J Thorac Cardiovasc Surg 129:391–400

    PubMed  CAS  Google Scholar 

  47. Karkouti K, Wijeysundera DN, Yau TM et al (2004) The independent association of massive blood loss with mortality in cardiac surgery. Transfusion 44:1453–1462

    PubMed  Google Scholar 

  48. Karkouti K, Wijeysundera DN, Yau TM et al (2009) Acute kidney injury after cardiac surgery: focus on modifiable risk factors. Circulation 119:495–502

    PubMed  Google Scholar 

  49. Kats S, Schonberger JP, Brands R et al (2011) Endotoxin release in cardiac surgery with cardiopulmonary bypass: pathophysiology and possible therapeutic strategies. An update. Eur J Cardiothorac Surg 39:451–458

    PubMed  Google Scholar 

  50. Khalil PN, Ismail M, Kalmar P et al (2004) Activation of fibrinolysis in the pericardial cavity after cardiopulmonary bypass. Thromb Haemost 92:568–574

    PubMed  CAS  Google Scholar 

  51. Klos A, Tenner AJ, Johswich KO et al (2009) The role of the anaphylatoxins in health and disease. Mol Immunol 46:2753–2766

    PubMed  CAS  Google Scholar 

  52. Kobayashi J, Tashiro T, Ochi M et al (2005) Early outcome of a randomized comparison of off-pump and on-pump multiple arterial coronary revascularization. Circulation 112:I338–343

    PubMed  Google Scholar 

  53. Kozek-Langenecker SA (2008) Direct thrombin inhibitors: pharmacology and application in cardiovascular anesthesia. Anaesthesist 57:597–606

    PubMed  CAS  Google Scholar 

  54. Laffey JG, Boylan JF, Cheng DC (2002) The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology 97:215–252

    PubMed  CAS  Google Scholar 

  55. Lampa M, Ramsay J (1999) Anesthetic implications of new surgical approaches to myocardial revascularization. Curr Opin Anaesthesiol 12:3–8

    PubMed  CAS  Google Scholar 

  56. Landoni G, Bove T, Crivellari M et al (2007) Acute renal failure after isolated CABG surgery: six years of experience. Minerva Anestesiol 73:559–565

    PubMed  CAS  Google Scholar 

  57. Leary MC, Caplan LR (2007) Technology insight: brain MRI and cardiac surgery – detection of postoperative brain ischemia. Nat Clin Pract Cardiovasc Med 4:379–388

    PubMed  Google Scholar 

  58. Levy JH, Tanaka KA (2003) Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg 75:715–720

    Google Scholar 

  59. Levy MM, Fink MP, Marshall JC et al (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31:1250–1256

    PubMed  Google Scholar 

  60. Li SY, Chen JY, Yang WC et al (2011) Acute kidney injury network classification predicts in-hospital and long-term mortality in patients undergoing elective coronary artery bypass grafting surgery. Eur J Cardiothorac Surg 39:323–328

    PubMed  Google Scholar 

  61. Maharaj C, Laffey JG (2004) New strategies to control the inflammatory response in cardiac surgery. Curr Opin Anaesthesiol 17:35–48

    PubMed  Google Scholar 

  62. Mangano DT, Tudor IC, Dietzel C (2006) The risk associated with aprotinin in cardiac surgery. N Engl J Med 354:353–365

    PubMed  CAS  Google Scholar 

  63. Mangoush O, Purkayastha S, Haj-Yahia S et al (2007) Heparin-bonded circuits versus nonheparin-bonded circuits: an evaluation of their effect on clinical outcomes. Eur J Cardiothorac Surg 31:1058–1069

    PubMed  Google Scholar 

  64. Manji RA, Grocott HP, Leake J et al (2012) Seizures following cardiac surgery: the impact of tranexamic acid and other risk factors. Can J Anaesth 59:6–13

    PubMed  Google Scholar 

  65. Marcheix B, Carrier M, Martel C et al (2008) Effect of pericardial blood processing on postoperative inflammation and the complement pathways. Ann Thorac Surg 85:530–535

    PubMed  Google Scholar 

  66. Martel N, Lee J, Wells PS (2005) Risk for heparin-induced thrombocytopenia with unfractionated and low-molecular-weight heparin thromboprophylaxis: a meta-analysis. Blood 106:2710–2715

    PubMed  CAS  Google Scholar 

  67. Masuda M, Morita S, Tomita H et al (2002) Off-pump CABG attenuates myocardial enzyme leakage but not postoperative brain natriuretic peptide secretion. Ann Thorac Cardiovasc Surg 8:139–144

    PubMed  Google Scholar 

  68. Mathew JP, Grocott HP, Phillips-Bute B et al (2003) Lower endotoxin immunity predicts increased cognitive dysfunction in elderly patients after cardiac surgery. Stroke 34:508–513

    PubMed  CAS  Google Scholar 

  69. McKhann GM, Grega MA, Borowicz LM Jr et al (2006) Stroke and encephalopathy after cardiac surgery: an update. Stroke 37:562–571

    PubMed  Google Scholar 

  70. McKinlay KH, Schinderle DB, Swaminathan M et al (2004) Predictors of inotrope use during separation from cardiopulmonary bypass. J Cardiothorac Vasc Anesth 18:404–408

    PubMed  Google Scholar 

  71. Milot J, Perron J, Lacasse Y et al (2001) Incidence and predictors of ARDS after cardiac surgery. Chest 119:884–888

    PubMed  CAS  Google Scholar 

  72. Misfeld M, Potger K, Ross DE et al (2010) „Anaortic“ off-pump coronary artery bypass grafting significantly reduces neurological complications compared to off-pump and conventional on-pump surgery with aortic manipulation. Thorac Cardiovasc Surg 58:408–414

    PubMed  CAS  Google Scholar 

  73. Mulholland JW, Shelton JC, Luo XY (2005) Blood flow and damage by the roller pumps during cardiopulmonary bypass. J Fluids Struct 20:129–140

    Google Scholar 

  74. Muller H, Hugel W, Reifschneider HJ et al (1989) Lysosomal enzyme activity influenced by various types of respiration during extracorporeal circulation. Thorac Cardiovasc Surg 37:65–71

    PubMed  CAS  Google Scholar 

  75. Murphy GJ, Angelini GD (2004) Side effects of cardiopulmonary bypass: what is the reality? J Card Surg 19:481–488

    PubMed  CAS  Google Scholar 

  76. Murphy GS, Hessel EA 2nd, Groom RC (2009) Optimal perfusion during cardiopulmonary bypass: an evidence-based approach. Anesth Analg 108:1394–1417

    PubMed  Google Scholar 

  77. Murphy GS, Marymont JH (2007) Alternative anticoagulation management strategies for the patient with heparin-induced thrombocytopenia undergoing cardiac surgery. J Cardiothorac Vasc Anesth 21:113–126

    PubMed  CAS  Google Scholar 

  78. Nakayama Y, Sakata R, Ura M et al (2003) Long-term results of coronary artery bypass grafting in patients with renal insufficiency. Ann Thorac Surg 75:496–500

    PubMed  Google Scholar 

  79. Neuhof C, Wendling J, Dapper F et al (2001) Endotoxemia and cytokine generation in cardiac surgery in relation to flow mode and duration of cardiopulmonary bypass. Shock 16(Suppl 1):39–43

    PubMed  Google Scholar 

  80. Newman MF, Kirchner JL, Phillips-Bute B et al (2001) Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med 344:395–402

    PubMed  CAS  Google Scholar 

  81. Nieman G, Searles B, Carney D et al (1999) Systemic inflammation induced by cardiopulmonary bypass: a review of pathogenesis and treatment. J Extra Corpor Technol 31:202–210

    PubMed  CAS  Google Scholar 

  82. Nilsson L, Kulander L, Nystrom SO et al (1990) Endotoxins in cardiopulmonary bypass. J Thorac Cardiovasc Surg 100:777–780

    PubMed  CAS  Google Scholar 

  83. Nishiyama K, Horiguchi M, Shizuta S et al (2009) Temporal pattern of strokes after on-pump and off-pump coronary artery bypass graft surgery. Ann Thorac Surg 87:1839–1844

    PubMed  Google Scholar 

  84. Paparella D, Yau TM, Young E (2002) Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur J Cardiothorac Surg 21:232–244

    PubMed  CAS  Google Scholar 

  85. Parolari A, Alamanni F, Naliato M et al (2000) Adult cardiac surgery outcomes: role of the pump type. Eur J Cardiothorac Surg 18:575–582

    PubMed  CAS  Google Scholar 

  86. Patel KD, Cuvelier SL, Wiehler S (2002) Selectins: critical mediators of leukocyte recruitment. Semin Immunol 14:73–81

    PubMed  CAS  Google Scholar 

  87. Pavord ID, Birring SS, Berry M et al (2006) Multiple inflammatory hits and the pathogenesis of severe airway disease. Eur Respir J 27:884–888

    PubMed  CAS  Google Scholar 

  88. Penttila HJ, Lepojarvi MV, Kiviluoma KT et al (2001) Myocardial preservation during coronary surgery with and without cardiopulmonary bypass. Ann Thorac Surg 71:565–571

    PubMed  CAS  Google Scholar 

  89. Potzsch B, Klovekorn WP, Madlener K (2000) Use of heparin during cardiopulmonary bypass in patients with a history of heparin-induced thrombocytopenia. N Engl J Med 343:515

    PubMed  CAS  Google Scholar 

  90. Pouplard C, May MA, Regina S et al (2005) Changes in platelet count after cardiac surgery can effectively predict the development of pathogenic heparin-dependent antibodies. Br J Haematol 128:837–841

    PubMed  Google Scholar 

  91. Provenchere S, Plantefeve G, Hufnagel G et al (2003) Renal dysfunction after cardiac surgery with normothermic cardiopulmonary bypass: incidence, risk factors, and effect on clinical outcome. Anesth Analg 96:1258–1264

    PubMed  Google Scholar 

  92. Puehler T, Haneya A, Philipp A et al (2011) Minimized extracorporeal circulation system in coronary artery bypass surgery: a 10-year single-center experience with 2243 patients. Eur J Cardiothorac Surg 39:459–464

    PubMed  Google Scholar 

  93. Puskas JD, Williams WH, Duke PG et al (2003) Off-pump coronary artery bypass grafting provides complete revascularization with reduced myocardial injury, transfusion requirements, and length of stay: a prospective randomized comparison of two hundred unselected patients undergoing off-pump versus conventional coronary artery bypass grafting. J Thorac Cardiovasc Surg 125:797–808

    PubMed  CAS  Google Scholar 

  94. Raja SG, Berg GA (2007) Impact of off-pump coronary artery bypass surgery on systemic inflammation: current best available evidence. J Card Surg 22:445–455

    PubMed  Google Scholar 

  95. Reis Miranda D, Gommers D, Struijs A et al (2005) Ventilation according to the open lung concept attenuates pulmonary inflammatory response in cardiac surgery. Eur J Cardiothorac Surg 28:889–895

    Google Scholar 

  96. Riess FC (2005) Anticoagulation management and cardiac surgery in patients with heparin-induced thrombocytopenia. Semin Thorac Cardiovasc Surg 17:85–96

    PubMed  Google Scholar 

  97. Rinder CS, Rinder HM, Smith MJ et al (1999) Selective blockade of membrane attack complex formation during simulated extracorporeal circulation inhibits platelet but not leukocyte activation. J Thorac Cardiovasc Surg 118:460–466

    PubMed  CAS  Google Scholar 

  98. Robert AM, Kramer RS, Dacey LJ et al (2010) Cardiac surgery-associated acute kidney injury: a comparison of two consensus criteria. Ann Thorac Surg 90:1939–1943

    PubMed  Google Scholar 

  99. Rosner MH, Portilla D, Okusa MD (2008) Cardiac surgery as a cause of acute kidney injury: pathogenesis and potential therapies. J Intensive Care Med 23:3–18

    PubMed  Google Scholar 

  100. Saadia R, Schein M (1999) Multiple organ failure. How valid is the „two hit“ model? J Accid Emerg Med 16:163–166

    PubMed  CAS  Google Scholar 

  101. Schlensak C, Doenst T, Preusser S et al (2002) Cardiopulmonary bypass reduction of bronchial blood flow: a potential mechanism for lung injury in a neonatal pig model. J Thorac Cardiovasc Surg 123:1199–1205

    PubMed  Google Scholar 

  102. Schneeweiss S, Seeger JD, Landon J et al (2008) Aprotinin during coronary-artery bypass grafting and risk of death. N Engl J Med 358:771–783

    PubMed  CAS  Google Scholar 

  103. Shaw AD, Stafford-Smith M, White WD et al (2008) The effect of aprotinin on outcome after coronary-artery bypass grafting. N Engl J Med 358:784–793

    PubMed  CAS  Google Scholar 

  104. Sheridan AM, Bonventre JV (2000) Cell biology and molecular mechanisms of injury in ischemic acute renal failure. Curr Opin Nephrol Hypertens 9:427–434

    PubMed  CAS  Google Scholar 

  105. Shroyer AL, Grover FL, Hattler B et al (2009) On-pump versus off-pump coronary-artery bypass surgery. N Engl J Med 361:1827–1837

    PubMed  CAS  Google Scholar 

  106. Sreeram GM, Grocott HP, White WD et al (2004) Transcranial Doppler emboli count predicts rise in creatinine after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 18:548–551

    PubMed  Google Scholar 

  107. Stroobant N, Van Nooten G, De Bacquer D et al (2008) Neuropsychological functioning 3–5 years after coronary artery bypass grafting: does the pump make a difference? Eur J Cardiothorac Surg 34:396–401

    PubMed  Google Scholar 

  108. Stroobant N, Van Nooten G, Van Belleghem Y et al (2005) Relation between neurocognitive impairment, embolic load, and cerebrovascular reactivity following on- and off-pump coronary artery bypass grafting. Chest 127:1967–1976

    PubMed  Google Scholar 

  109. Suen WS, Mok CK, Chiu SW et al (1998) Risk factors for development of acute renal failure (ARF) requiring dialysis in patients undergoing cardiac surgery. Angiology 49:789–800

    PubMed  CAS  Google Scholar 

  110. Suh JS, Aster RH, Visentin GP (1998) Antibodies from patients with heparin-induced thrombocytopenia/thrombosis recognize different epitopes on heparin: platelet factor 4. Blood 91:916–922

    PubMed  CAS  Google Scholar 

  111. Tabuchi N, De Haan J, Boonstra PW et al (1993) Activation of fibrinolysis in the pericardial cavity during cardiopulmonary bypass. J Thorac Cardiovasc Surg 106:828–833

    PubMed  CAS  Google Scholar 

  112. Tempe DK, Hasija S (2012) Are tranexamic acid and epsilon-aminocaproic acid adequate substitutes for aprotinin? Ann Card Anaesth 15:4–5

    PubMed  Google Scholar 

  113. Ti LK, Goh BL, Wong PS et al (2008) Comparison of mini-cardiopulmonary bypass system with air-purge device to conventional bypass system. Ann Thorac Surg 85:994–1000

    PubMed  Google Scholar 

  114. Toumpoulis IK, Anagnostopoulos CE, Balaram SK et al (2006) Assessment of independent predictors for long-term mortality between women and men after coronary artery bypass grafting: are women different from men? J Thorac Cardiovasc Surg 131:343–351

    PubMed  Google Scholar 

  115. Ueyama K, Nishimura K, Nishina T et al (2004) PMEA coating of pump circuit and oxygenator may attenuate the early systemic inflammatory response in cardiopulmonary bypass surgery. ASAIO J 50:369–372

    PubMed  CAS  Google Scholar 

  116. Valen G, Paulsson G, Vaage J (2001) Induction of inflammatory mediators during reperfusion of the human heart. Ann Thorac Surg 71:226–232

    PubMed  CAS  Google Scholar 

  117. Van Dijk D, Nierich AP, Jansen EW et al (2001) Early outcome after off-pump versus on-pump coronary bypass surgery: results from a randomized study. Circulation 104:1761–1766

    Google Scholar 

  118. Wan S, Desmet JM, Barvais L et al (1996) Myocardium is a major source of proinflammatory cytokines in patients undergoing cardiopulmonary bypass. J Thorac Cardiovasc Surg 112:806–811

    PubMed  CAS  Google Scholar 

  119. Warkentin TE, Greinacher A, Koster A et al (2008) Treatment and prevention of heparin-induced thrombocytopenia: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 133:340–380

    Google Scholar 

  120. Warren OJ, Smith AJ, Alexiou C et al (2009) The inflammatory response to cardiopulmonary bypass: part 1 – mechanisms of pathogenesis. J Cardiothorac Vasc Anesth 23:223–231

    PubMed  Google Scholar 

  121. Wiesenack C, Liebold A, Philipp A et al (2004) Four years‘ experience with a miniaturized extracorporeal circulation system and its influence on clinical outcome. Artif Organs 28:1082–1088

    PubMed  Google Scholar 

  122. Wright G (2001) Haemolysis during cardiopulmonary bypass: update. Perfusion 16:345–351

    PubMed  CAS  Google Scholar 

Download references

Danksagung

Die Autoren danken Frau Angela Frintrup, Herrn Priv.-Doz. Dr. Jörg Linneweber (Klinik für Kardiovaskuläre Chirurgie, Charité-Universitätsmedizin Berlin) und Harald Keller (Universitätskliniken Frankfurt a. M.) für die konstruktive Kritik bei der Erstellung des Beitrags.

Interessenkonflikt

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Knuefermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baehner, T., Boehm, O., Probst, C. et al. Kardiopulmonaler Bypass in der Herzchirurgie. Anaesthesist 61, 846–856 (2012). https://doi.org/10.1007/s00101-012-2050-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-012-2050-0

Schlüsselwörter

Keywords

Navigation