Skip to main content
Log in

Aktuelle Entwicklungen in der Xenonforschung

Stellenwert für die Anästhesie und Intensivmedizin

Current developments in xenon research

Importance for anesthesia and intensive care medicine

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Das Edelgas Xenon kommt in der Summe seiner Eigenschaften den Vorstellungen von einem idealen Anästhetikum sehr nahe. Es vereint optimale anästhetische Eigenschaften mit einem hohen Maß an hämodynamischer Stabilität. Daneben ermöglicht Xenon eine exzellent steuerbare und sichere Anästhesie. Lediglich der molekulare Wirkmechanismus im Gehirn ist nach wie vor nicht endgültig geklärt. Experimentell konnte gezeigt werden, dass Xenon, anscheinend ohne relevante Nebenwirkungen, organprotektive Eigenschaften an Herz, Gehirn und Nieren aufweist. Da der Einsatz von Xenon in der täglichen Routine aufgrund hoher Kosten und begrenzter Ressourcen weiterhin limitiert sein wird, ist es die Aufgabe zukünftiger Studien, seinen Stellenwert bei spezifischen Indikationen in Anästhesie und Intensivmedizin aufzuzeigen.

Abstract

The noble gas xenon exerts favorable anesthetic properties along with remarkable hemodynamic stability in healthy patients undergoing elective surgery. It represents the nearly ideal anesthetic and provides safe and well controllable anesthesia although the exact mechanism by which xenon produces anesthesia remains to be elucidated. In addition xenon offers organ protective properties for vital organs including the brain, heart and kidneys which seem to be synergistic when used in combination with therapeutic hypothermia. As the high cost of xenon will probably preclude its wider use as a routine anesthetic, data from extensive tests in large numbers of high risk patients is needed to confirm its possible superiority in this setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Adolph O, Köster S, Georgieff M et al (2010) Xenon-induced changes in CNS sensitization to pain. Neuroimage 49(1):720–730

    Article  PubMed  Google Scholar 

  2. Banks P, Franks NP, Dickinson R (2010) Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia. Anesthesiology 112(3):614–622

    Article  CAS  PubMed  Google Scholar 

  3. Bantel C, Maze M, Trapp S (2010) Noble gas Xenon is a novel adenosine triphosphate-sensitive potassium channel opener. Anesthesiology 112(3):623–630

    Article  CAS  PubMed  Google Scholar 

  4. Baumert JH, Hein M, Hecker KE et al (2007) Autonomic cardiac control with xenon anaesthesia in patients at cardiovascular risk. Br J Anaesth 98(6):722–727

    Article  PubMed  Google Scholar 

  5. Baumert JH, Hein M, Gerets C et al (2007) The effect of xenon anesthesia on the size of experimental myocardial infarction. Anesth Analg 105:1200–1206

    Article  CAS  PubMed  Google Scholar 

  6. Baumert JH, Hein M, Hecker KE et al (2008) Xenon or propofol anaesthesia for patients at cardiovascular risk in non-cardiac surgery. Br J Anaesth 100(5):605–611

    Article  CAS  PubMed  Google Scholar 

  7. Behnke AR, Yarborough OD (1939) Respiratory resistance, oil-water solubility, and mental effects of argon, compared with helium and nitrogen. Am J Physiol 126:409–415

    CAS  Google Scholar 

  8. Bock M, Klippel K, Nitsche B et al (2000) Rocuronium potency and recovery characteristics during steady-state desflurane, sevoflurane, isoflurane or propofol anaesthesia. Br J Anaesth 84:43–47

    CAS  PubMed  Google Scholar 

  9. Coburn M, Kunitz O, Baumert J-H et al (2005) Randomized controlled trial of the hemodynamic and recovery effects of xenon and propofol anaesthesia. Br J Anaesth 94:198–202

    Article  CAS  PubMed  Google Scholar 

  10. Coburn M, Kunitz O, Baumert J-H, Rossaint R (2005) Patients‘ self-evaluation after 4–12 weeks following xenon or propofol anaesthesia – a comparison. Eur J Anaesthesiol 22:870–874

    Article  CAS  PubMed  Google Scholar 

  11. Coburn M, Baumert JH, Roertgen D et al (2007) Emergence and early cognitive function in the elderly after xenon or desflurane anaesthesia: a double-blinded randomized controlled trial. Br J Anaesth 98:756–762

    Article  CAS  PubMed  Google Scholar 

  12. Coburn M, Kunitz O, Apfel CC et al (2008) Incidence of postoperative nausea and emetic episodes after xenon anaesthesia compared with propofol-based anaesthesia. Br J Anaesth 100(6):787–791

    Article  CAS  PubMed  Google Scholar 

  13. Coburn M, Maze M, Franks NP (2008) The neuroprotective effects of xenon and helium in an in vitro model of traumatic brain injury. Crit Care Med 36:588–595

    Article  CAS  PubMed  Google Scholar 

  14. Cullen SC, Gross EG (1951) The anesthetic properties of xenon in animals and human beings with additional observations on krypton. Science 133:580–582

    Article  Google Scholar 

  15. Derwall M, Çizen A, Löwer C et al (2009) Combining xenon and mild therapeutic hypothermia to reduce neurological sequelae after cardiac arrest. Circulation 120:S642

    Google Scholar 

  16. Dickinson R, Peterson BK, Banks P et al (2007) Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor by the anaesthetics xenon and isoflurane: evidence from molecular modeling and electrophysiology. Anesthesiology 107(5):756–767

    Article  CAS  PubMed  Google Scholar 

  17. Dingley J, Tooley J, Porter H, Thoresen M (2006) Xenon provides short-term neuroprotection in neonatal rats when administered after hypoxia-ischemia. Stroke 37:501–506

    Article  CAS  PubMed  Google Scholar 

  18. Franks NP, Dickinson R, Sousa SL de et al (1998) How does xenon produce anaesthesia? Nature 396(6709):324

    Article  CAS  PubMed  Google Scholar 

  19. Franks NP (2008) General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 9(5):370–386

    Article  CAS  PubMed  Google Scholar 

  20. Fries M, Weis J, Rossaint R (2006) Is xenon really neuroprotective after cardiac arrest? Anesthesiology 104:211

    Article  PubMed  Google Scholar 

  21. Fries M, Nolte KW, Coburn M et al (2008) Xenon reduces neurohistopathological damage and improves the early neurological deficit after cardiac arrest in pigs. Crit Care Med 36(8):2420–2426

    Article  PubMed  Google Scholar 

  22. Fries M, Coburn M, Nolte KW et al (2009) Early administration of Xenon or Isofluran may not improve functional outcome and cerebral alterations in a porcine model of cardiac arrest. Resuscitation 80(5):584–590

    Article  CAS  PubMed  Google Scholar 

  23. Froeba G, Georgieff M, Linder EM et al (2010) Intranasal application of xenon: describing the pharmacokinetics in experimental animals and the increased pain tolerance within a placebo-controlled experimental human study. Br J Anaesth 104(3):351–358

    Article  CAS  PubMed  Google Scholar 

  24. Gruss M, Bushell TJ, Bright DP et al (2004) Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol 65(2):443–452

    Article  CAS  PubMed  Google Scholar 

  25. Hanss R, Bein B, Turovski et al (2006) The influence of xenon on regulation of the autonomic nervous system in patients at high risk of perioperative cardiac complications. Br J Anaesth 96:427–436

    Article  CAS  PubMed  Google Scholar 

  26. Hein M, Roehl AB, Baumert JH et al (2008) Establishment of a porcine right ventricular infarction model for cardioprotective actions of xenon and isoflurane. Acta Anaesthesiol Scand 52:1194–1203

    Article  CAS  PubMed  Google Scholar 

  27. Heinke W, Schwarzbauer C (2002) In vivo imaging of anaesthetic action in humans: approaches with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Br J Anaesth 89(1):112–122

    Article  CAS  PubMed  Google Scholar 

  28. Homi HM, Yokoo N, Ma D et al (2003) The neuroprotective effect of xenon administration during transient middle cerebral artery occlusion in mice. Anesthesiology 99:876–881

    Article  CAS  PubMed  Google Scholar 

  29. Jellish WS, Brody M, Sawicki K, Slogoff S (2000) Recovery from neuromuscular blockade after either bolus and prolonged infusions of cisatracurium or rocuronium using either isoflurane or propofol-based anesthetics. Anesth Analg 91:1250–1255

    Article  CAS  PubMed  Google Scholar 

  30. Jungwirth B, Gordan ML, Blobner M et al (2006) Xenon impairs neurocognitive and histologic outcome after cardiopulmonary bypass combined with cerebral air embolism in rats. Anesthesiology 104:770–776

    Article  PubMed  Google Scholar 

  31. Jungwirth B, Kellermann K, Blobner M et al (2007) Cerebral air emboli differentially alter outcome after cardiopulmonary bypass in rats compared with normal circulation. Anesthesiology 107:768–775

    Article  PubMed  Google Scholar 

  32. Kunitz O, Baumert J-H, Hecker K et al (2004) Xenon does not prolong neuromuscular block of rocuronium. Anesth Analg 99:1398–1401

    Article  CAS  PubMed  Google Scholar 

  33. Kunitz O, Baumert JH, Hecker K et al (2005) Xenon does not modify mivacurium induced neuromuscular block. Can J Anaesth 52:940–943

    Article  PubMed  Google Scholar 

  34. Lachmann B, Armbruster S, Schairer W et al (1990) Safety and efficacy of xenon in routine use as an inhalational anaesthetic. Lancet 335:1413–1415

    Article  CAS  PubMed  Google Scholar 

  35. Laitio RM, Kaisti KK, Låangsjö JW et al (2007) Effects of xenon on cerebral blood flow in humans: a positron emission tomography study. Anesthesiology 106(6):1128–1133

    Article  PubMed  Google Scholar 

  36. Laitio RM, Långsjö JW, Aalto S et al (2009) The effects of xenon anesthesia on the relationship between cerebral glucose metabolism and blood flow in healthy subjects: a positron emission tomography study. Anesth Analg 108(2):593–600

    Article  CAS  PubMed  Google Scholar 

  37. Lawrence JH, Loomis WF, Tobias CA, Turpin FH (1946) Preliminary observations on the narcotic effect of xenon with a review of values for solubilities of gases in water and oils. J Physiol 105(3):197–204

    CAS  Google Scholar 

  38. Lockwood GG, Franks NP, Downie NA et al (2006) Feasibility and safety of delivering xenon to patients undergoing coronary bypass graft surgery while on cardiopulmonary bypass: phase I study. Anesthesiology 104:458–465

    Article  PubMed  Google Scholar 

  39. Ma D, Hossain M, Chow A et al (2005) Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. Ann Neurol 58:182–193

    Article  CAS  PubMed  Google Scholar 

  40. Ma D, Lim T, Xu J et al (2009) Xenon preconditioning protects against renal ischemic-reperfusion injury via HIF-1alpha activation. J Am Soc Nephrol 20(4):713–720. Epub 2009 Jan 14

    Article  CAS  PubMed  Google Scholar 

  41. Martin JL, Ma D, Hossain M et al (2007) Asynchronous administration of xenon and hypothermia significantly reduces brain infarction in the neonatal rat. Br J Anaesth 98:236–240

    Article  CAS  PubMed  Google Scholar 

  42. Ohara A, Mashimo T, Zhang P et al (1997) A comparative study of the antinociceptive action of xenon and nitrous oxide in rats. Anesth Analg 85:931–936

    Article  CAS  PubMed  Google Scholar 

  43. Petzelt C, Blom P, Schmehl W et al (2003) Prevention of neurotoxicity in hypoxic cortical neurons by the noble gas xenon. Life Sci 72:1909–1918

    Article  CAS  PubMed  Google Scholar 

  44. Petzelt C, Blom P, Schmehl W et al (2004) Xenon prevents cellular damage in differentiated PC-12 cells exposed to hypoxia. BMC Neurosci 5:55

    Article  PubMed  Google Scholar 

  45. Preckel B, Mullenheim J, Moloschavij A et al (2000) Xenon administration during early reperfusion reduces infarct size after regional ischemia in the rabbit heart in vivo. Anesth Analg 91:1327–1332

    Article  CAS  PubMed  Google Scholar 

  46. Preckel B, Weber NC, Sanders RD et al (2006) Molecular mechanisms transducing the anaesthetic, analgesic, and organ-protective actions of xenon. Anesthesiology 105(1):187–197

    Article  PubMed  Google Scholar 

  47. Rex S, Schaefer W, Meyer PH et al (2006) Positron emission tomography study of regional cerebral metabolism during general anesthesia with xenon in humans. Anesthesiology 105:936–943

    Article  CAS  PubMed  Google Scholar 

  48. Rex S, Meyer PT, Baumert JH et al (2008) Positron emission tomography study of regional cerebral blood flow and flow-metabolism coupling during general anaesthesia with xenon in humans. Br J Anaesth 100(5):667–675

    Article  CAS  PubMed  Google Scholar 

  49. Roehl AB, Goetzenich A, Rossaint R et al (2010) A practical rule for optimal flows for xenon anaesthesia in a semi-closed anaesthesia circuit. Eur J Anaesthesiol 27(7):660–665

    Article  PubMed  Google Scholar 

  50. Rossaint R, Reyle-Hahn M, Schulte Am Esch J et al (2003) Multicenter randomized comparison of the efficacy and safety of xenon and isoflurane in patients undergoing elective surgery. Anesthesiology 98:6–13

    Article  CAS  PubMed  Google Scholar 

  51. Salmi E, Laitio RM, Aalto S et al (2008) Xenon does not affect gamma-aminobutyric acid type A receptor binding in humans. Anesth Analg 106(1):129–134

    Article  CAS  PubMed  Google Scholar 

  52. Seppelt I (2005) Hypothermia does not improve outcome from traumatic brain injury. Crit Care Resusc 7:233–237

    CAS  PubMed  Google Scholar 

  53. Schmidt M, Marx T, Papp-Jambor C et al (2002) Effect of xenon on cerebral autoregulation in pigs. Anaesthesia 57(10):960–966

    Article  CAS  PubMed  Google Scholar 

  54. Schmidt M, Marx T, Armbruster S et al (2005) Effect of xenon on elevated intracranial pressure as compared with nitrous oxide and total intravenous anesthesia in pigs. Acta Anaesthesiol Scand 49:494–501

    Article  CAS  PubMed  Google Scholar 

  55. Schmidt M, Marx T, Gloggl E et al (2005) Xenon attenuates cerebral damage after ischemia in pigs. Anesthesiology 102:929–936

    Article  CAS  PubMed  Google Scholar 

  56. Suzuki T, Koyama H, Sugimoto M et al (2002) The diverse actions of volatile and gaseous anesthetics on human-cloned 5-hydroxytryptamine3 receptors expressed in Xenopus oocytes. Anesthesiology 96(3):699–704

    Article  CAS  PubMed  Google Scholar 

  57. Wappler F, Rossaint R, Baumert J et al (2007) Multicenter randomized comparison of xenon and isoflurane on left ventricular function in patients undergoing elective surgery. Anesthesiology 106:463–471

    Article  CAS  PubMed  Google Scholar 

  58. Watanabe I, Takenoshita M, Sawada T et al (2004) Xenon suppresses nociceptive reflex in newborn rat spinal cord in vitro; comparison with nitrous oxide. Eur J Pharmacol 496:71–76

    Article  CAS  PubMed  Google Scholar 

  59. Weber NC, Toma O, Wolter JI et al (2005) The noble gas xenon induces pharmacological preconditioning in the rat heart in vivo via induction of PKC-epsilon and p38 MAPK. Br J Pharmacol 144(1):123–132

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Brücken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brücken, A., Coburn, M., Rex, S. et al. Aktuelle Entwicklungen in der Xenonforschung. Anaesthesist 59, 883–895 (2010). https://doi.org/10.1007/s00101-010-1787-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-010-1787-6

Schlüsselwörter

Keywords

Navigation