Skip to main content
Log in

Warum 37°C?

Evolutionäre Grundlagen der Thermoregulation

Why 37°C?

Evolutionary fundamentals of thermoregulation

  • Medizin aktuell
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Die Homöothermie steht am Ende eines Evolutionsprozesses, in dem jeder Anstieg des Sauerstoffangebots mit einer Zunahme des Energieumsatzes beantwortet und damit auch neue Abhängigkeiten geschaffen wurden. In Anpassung an die winterliche Nahrungsknappheit hat sich in gemäßigten Zonen der Winterschlaf entwickelt, der mit einer kontrollierten Absenkung der Körpertemperatur bis nahe 0°C einhergeht. Er bildet somit das eindrucksvollste Beispiel dafür, dass bei Homöothermen nicht nur die Körperschale poikilotherm ist, sondern auch die Körperkerntemperatur den Umgebungsbedingungen variabler angepasst werden kann, als vielfach angenommen. Allerdings stellen die natürlichen Torpiditätszustände anders als die klinische Hypothermie keine kältebedingte Stoffwechseldrosselung, sondern eine endogene Umsatzreduktion mit konsekutiver Temperatursenkung dar. Als stoffwechselsuppressiver Faktor wurde u. a. der pH-Wert diskutiert, der bei winterschlafenden Säugetieren – im Gegensatz zu den passiven Fluktuationen in der poikilothermen Körperschale (α-stat) – durch relative Hypoventilation bei 7,4 konstant gehalten wird (pH-stat). Bei der klinischen Hypothermie bestimmt die Temperatur insofern über die Umsatzrate, als es je nach Erhalt oder Ausschaltung der Thermoregulation entweder zu einer kältegegenregulatorischen Steigerung (akzidentelle Hypothermie) oder zu einer kältebedingten Drosselung der Stoffwechselrate (induzierte Hypothermie) kommt. Dagegen wird die absolute Hypothermietoleranz – wie ebenfalls am Beispiel des Winterschlafes erkennbar wird – eher von einem einheitlichen Minimalumsatz als von der artspezifischen Körpertemperatur bestimmt, bei der dieser je nach Körpergröße und Grundumsatz erreicht wird. Dementsprechend sollte die Hypothermie auch weniger nach dem Grad der Abkühlung als vielmehr nach den metabolischen Auswirkungen beurteilt werden, die sie in Abhängigkeit von den jeweiligen Rahmenbedingungen hervorruft.

Abstract

Homeothermy is the result of an evolutionary process during which every increase in oxygen supply led to a consecutive increase in metabolic rate and, thus, to a new dependence on favorable ambient conditions. In response to the food scarcity of winter months, some inhabitants of temperate zones developed an ability to hibernate which is characterized by a fully thermocontrolled reduction in body temperature down to near zero values. Hibernation thus illustrates that in homeotherms, not only the body shell is poikilothermic, but also the core temperature is more variable than often assumed. However, in contrast to clinical hypothermia, natural torpidity does not consist of a cold-induced reduction in metabolic rate, but of an endogenous metabolic reduction with subsequent lowering of body temperature. As a factor of metabolic suppression, the pH has been suspected which, in hibernators, is kept constant at 7.4 by relative hypoventilation (pH-stat) which differs from its passive shift in the poikilothermic body shell (α-stat). In clinical hypothermia, temperature governs the metabolic rate in that, depending on the state of thermoregulation, either a cold defense reaction with an increased metabolic rate (accidental hypothermia) or a cold-induced reduction in metabolic rate (induced hypothermia) occurs. However, as can be learned from hibernators, the lower limit of hypothermia tolerance seems to be due to a uniform minimal metabolic rate rather than to the species-specific body temperature at which this metabolic limit is reached, depending on body size and basal metabolic rate. Accordingly, in judging the sequelae of hypothermia, the degree of cooling should be given less emphasis than the resulting effects on metabolic rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Blatteis CM (ed) (1998) Physiology and pathophysiology of temperature regulation. World Scientific, Singapore

  2. Boutilier RG (2001) Mechanisms of cell survival in hypoxia and hypothermia. J Exp Biol 204: 3171–3181

    PubMed  CAS  Google Scholar 

  3. Brendel W, Reulen J, Messmer K (1965) Die Kälteschwellung des Gehirns und die Begrenzung der Überlebenszeit in Hypothermie. Klin Wochenschr 43: 515–517

    Article  PubMed  CAS  Google Scholar 

  4. Cowen R (ed) (2000) History of life. Chapt. 15, The origin of mammals. Blackwell, Malden MA, pp 241–259

  5. Crompton AW, Taylor CR, Jagger JA (1978) Evolution of homeothermy in mammals. Nature 272: 333–336

    Article  PubMed  CAS  Google Scholar 

  6. Darveau C-A, Suarez RK, Andrews RD, Hochachka PW (2002) Allometric cascade as a unifying principle of body mass effects on metabolism. Nature 417: 166–170

    Article  PubMed  CAS  Google Scholar 

  7. Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2004) Hibernation in a tropical primate. Nature 429: 825–826

    Article  PubMed  CAS  Google Scholar 

  8. Dawson TJ (1972) Primitive mammals and patterns in the evolution of thermoregulation. In: Bligh J, Moore RE (eds) Essays on temperature regulation. North-Holland, Amsterdam, pp 1–18

  9. Else PL, Hulbert AJ (1987) Evolution of mammalian endothermic metabolism: „Leaky“ membranes as a source of heat. Am J Physiol 253: R1–R7

    PubMed  CAS  Google Scholar 

  10. Geiser F (1988) Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition? J Comp Physiol B 158: 25–37

    Article  PubMed  CAS  Google Scholar 

  11. Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66: 239–274

    Article  PubMed  CAS  Google Scholar 

  12. Gekle M, Singer D, Jessen C (2005) Temperaturregulation und Wärmehaushalt. In: Klinke R, Pape H-C, Silbernagl S (Hrsg) Physiologie. Thieme, Stuttgart, S 493–508

  13. Gnaiger E (2003) Oxygen conformance of cellular respiration: a perspective of mitochondrial physiology. Adv Exp Med Biol 543: 39–55

    PubMed  CAS  Google Scholar 

  14. Heldmaier G, Ruf T (1992) Body temperature and metabolic rate during natural hypothermia in endotherms. J Comp Physiol B 162: 696–706

    Article  PubMed  CAS  Google Scholar 

  15. Heldmaier G, Ortmann S, Elvert R (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol 141: 317–329

    Article  PubMed  Google Scholar 

  16. Hering JP, Schröder T, Singer D, Hellige G (1992) Influence of pH management on hemodynamics and metabolism in moderate hypothermia. J Thorac Cardiovasc Surg 104: 1388–1395

    PubMed  CAS  Google Scholar 

  17. Hochachka PW (1986) Defense strategies against hypoxia and hypothermia. Science 231: 234–241

    Article  PubMed  CAS  Google Scholar 

  18. Howell BJ, Baumgardner FW, Bondi K, Rahn H (1970) Acid-base balance in cold-blooded vertebrates as a function of body temperature. Am J Physiol 218: 600–606

    PubMed  CAS  Google Scholar 

  19. Hughes GM (1967) Evolution between air and water. In: Reuck AVS de, Porter R (eds) Development of the lung (Ciba Foundation Symposium). Churchill, London, pp 64–80

  20. Hulbert AJ, Else PL (1999) Membranes as possible pacemakers of metabolism. J Theor Biol 199: 257–274

    Article  PubMed  CAS  Google Scholar 

  21. Jessen C (ed) (2001) Temperature regulation in humans and other mammals. Springer, Berlin Heidelberg New York Tokyo

  22. Karck M, Tanaka S, Bolling SF et al. (2000) Myocardial protection by ischemic preconditioning and delta-opioid receptor activation in the isolated working rat heart. J Thorac Cardiovasc Surg 122: 986–992

    Article  Google Scholar 

  23. Kayser C (ed) (1961) The physiology of natural hibernation. Pergamon, New York

  24. Lenton TM (2003) The coupled evolution of life and atmospheric oxygen. In: Rothschild LJ, Lister AM (eds) Evolution on planet earth: the impact of the physical environment. Academic Press, London, pp 35–53

  25. Lyman CP (1982) Why bother to hibernate? In: Lyman CP, Willis JS, Malan A, Wang LCH (eds) Hibernation and torpor in mammals and birds. Academic Press, New York, pp 1–11

  26. Macknight ADC, Leaf A (1987) Regulation of cellular volume. In: Andreoli TE, Hoffman JF, Fanestil DD, Schultz SG (eds) Membrane physiology. Plenum, New York, pp 311–328

  27. Malan A (1985) Acid-base regulation during hibernation. In: Rahn H, Prakash O (eds) Acid-base regulation and body temperature. Nijhoff, Boston, pp 33–53

  28. Malan A (1999) Acid-base regulation in hibernation and aestivation. In: Egginton S, Taylor EW, Raven JA (eds) Regulation of acid-base status in animals and plants. Soc Exp Biol Seminar Series 68. Cambridge University Press, Cambridge, pp 324–339

  29. Margulis L (ed) (1993) Symbiosis in cell evolution: microbial communities in the archean and proterozoic eons, 2nd edn. Freeman, New York

  30. Monge C, Leon-Velarde F (1991) Physiological adaptation to high altitude: oxygen transport in mammals and birds. Physiol Rev 71: 1135–1172

    PubMed  CAS  Google Scholar 

  31. Mortola JP (2004) Implications of hypoxic hypometabolism during mammalian ontogenesis. Respir Physiol Neurobiol 141: 345–356

    Article  PubMed  Google Scholar 

  32. Niele F (ed) (2005) Energy: engine of evolution. Chap. 2. The oxo-energy revolution. Shell Global Solutions Series. Elsevier, Amsterdam, pp 13–27

  33. Oeltgen PR, Nilekani SP, Nuchols PA et al. (1988) Further studies on opioids and hibernation: Delta opioid receptor ligand selectively induced hibernation in summer-active ground squirrels. Life Sci 43: 1565–1574

    Article  PubMed  CAS  Google Scholar 

  34. Rahn H (1982) Comparison of embryonic development in birds and mammals: birth weight, time, and cost. In: Taylor CR, Johansen K, Bolis L (eds) A companion to animal physiology. Cambridge University Press, Cambridge, pp 124–137

  35. Reeves RB (1972) An imidazole alphastat hypothesis for vertebrate acid-base regulation: tissue carbon dioxide content and body temperature in bullfrogs. Respir Physiol 14: 219–236

    Article  PubMed  CAS  Google Scholar 

  36. Reeves RB (1985) What are normal acid-base conditions in man when body temperature changes? In: Rahn H, Prakash O (eds) Acid-base regulation and body temperature. Nijhoff, Boston, pp 13–32

  37. Robin ED (1962) Relationship between temperature and plasma pH and carbon dioxide tension in the turtle. Nature 195: 249–251

    Article  PubMed  CAS  Google Scholar 

  38. Robin ED, Bromberg PA, Cross CE (1969) Some aspects of the evolution of vertebrate acid-base regulation. Yale J Biol Med 41: 448–467

    PubMed  CAS  Google Scholar 

  39. Rosenthal TB (1948) The effect of temperature on the pH of blood and plasma in vitro. J Biol Chem 173: 25–30

    CAS  PubMed  Google Scholar 

  40. Schmidt-Nielsen K (ed) (1984) Scaling: why is animal size so important? Cambridge University Press, Cambridge

  41. Sessler DI (2000) Perioperative heat balance. Anesthesiology 92: 578–596

    Article  PubMed  CAS  Google Scholar 

  42. Singer D (1997) Bedeutung und Kontrolle der Körpertemperatur bei Homöothermen. In: Weyland W, Braun U, Kettler D (Hrsg) Perioperative Hypothermie: Probleme, Prävention und Therapie. Aktiv Druck & Verlag, Ebelsbach, S 1–12

  43. Singer D (1999) Neonatal tolerance to hypoxia. Comp Biochem Physiol A 123: 221–234

    Article  CAS  Google Scholar 

  44. Singer D (2000) Thermoregulation. In: Schulte am Esch J, Scholz J, Wappler F (eds) Malignant hyperthermia. Pabst, Lengerich, S 78–90

  45. Singer D (2002) Phylogenese des Stoffwechsels der Säugetiere. Anasthesiol Intensivmed Notfallmed Schmerzther 37: 441–460

    Article  PubMed  CAS  Google Scholar 

  46. Singer D (2004) Metabolic adaptation to hypoxia: Cost and benefit of being small. Respir Physiol Neurobiol 141: 215–228

    Article  PubMed  CAS  Google Scholar 

  47. Singer D, Bretschneider HJ (1990) Metabolic reduction in hypothermia: pathophysiological problems and natural examples – Part 1/2. Thorac Cardiovasc Surg 38: 205–211; 212–219

    Article  PubMed  CAS  Google Scholar 

  48. Singer D, Hellige G (1991) Vorbereitung und Steuerung der extrakorporalen Zirkulation aus physiologischer Sicht. In: Preuße CJ, Schulte HD (Hrsg) Extrakorporale Zirkulation – heute. Steinkopff, Darmstadt, S 1–29

  49. Singer D, Bach F, Bretschneider HJ, Kuhn H-J (1993) Metabolic size allometry and the limits to beneficial metabolic reduction: hypothesis of a uniform specific minimal metabolic rate. In: Hochachka PW, Lutz PL, Sick T et al. (eds) Surviving hypoxia: mechanisms of control and adaptation. CRC, Boca Raton, pp 447–458

  50. Singer D, Schiffmann H (1997) Thermoregulatorische Besonderheiten des pädiatrischen Patienten. In: Weyland W, Braun U, Kettler D (Hrsg) Perioperative Hypothermie: Probleme, Prävention und Therapie. Aktiv Druck & Verlag, Ebelsbach, S 110–122

  51. Suarez RK, Doll CJ, Buie AE et al. (1989) Turtles and rats: a biochemical comparison of anoxia-tolerant and anoxia-sensitive brains. Am J Physiol 257: R1083–R1088

    PubMed  CAS  Google Scholar 

  52. Tallman RD (1997) Acid-base regulation, alpha-stat, and the emperor’s new clothes. J Cardiothorac Vasc Anesth 11: 282–288

    Article  PubMed  Google Scholar 

  53. Thauer R (1958) Pathophysiologie der Hypothermie. Thoraxchirurgie 6: 128–140

    PubMed  CAS  Google Scholar 

  54. Van Breukelen F, Martin SL (2002) Molecular adaptations in mammalian hibernators: unique adaptations or generalized responses? J Appl Physiol 92: 2640–2647

    Google Scholar 

  55. Vecchio L, Soldani C, Bottone MG et al. (2006) DADLE induces a reversible hibernation-like state in HeLa cells. Histochem Cell Biol 125: 193–201

    Article  PubMed  CAS  Google Scholar 

  56. Vybiral S, Jansky L (1997) Hibernation triggers and cryogens: do they play a role in hibernation? Comp Biochem Physiol A 118: 1125–1133

    Article  CAS  Google Scholar 

  57. Wald G (1964) The origins of life. Proc Natl Acad Sci U S A 52: 595–611

    Article  PubMed  CAS  Google Scholar 

  58. Weibel ER (ed) (1984) The pathway for oxygen: structure and function in the mammalian respiratory system. Harvard University Press, Cambridge MA

  59. West GB, Brown JH, Enquist BJ (1999) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284: 1677–1679

    Article  PubMed  CAS  Google Scholar 

  60. Wünnenberg W, Kuhnen G, Laschefski-Sievers R (1986) CNS regulation of body temperature in hibernators and non-hibernators. In: Heller HC, Musacchia XJ, Wang LCH (eds) Living in the cold: physiological and biochemical adaptations. Elsevier, New York, pp 185–192

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Singer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singer, D. Warum 37°C?. Anaesthesist 56, 899–906 (2007). https://doi.org/10.1007/s00101-007-1220-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-007-1220-y

Schlüsselwörter

Keywords

Navigation