Skip to main content
Log in

Einfluss verminderter Scherkräfte auf Entzündungsreaktionen in vitro

Effekte pathologischer Strömungsbedingungen auf Leukozyten-Endothel-Interaktionen und monozytäre „Tissue-factor-Expression“ in humanen Zellkulturen

Effects of reduced shear stress on inflammatory reactions in vitro

Effects of pathological flow conditions on leukocyte-endothelial interactions and monocyte tissue factor expression in human cell cultures

  • Originalien
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Leukozyten-Endothel-Interaktionen stellen ein wichtiges Bindeglied zwischen Perfusionsstörungen und Entzündungsreaktionen dar. Die vorliegende Untersuchung sollte die Frage beantworten, welchen Anteil reduzierte Scherkräfte an Leukozyten-Endothel-Interaktionen besitzen, und ob durch hydrodynamische Störungen direkt Entzündungsreaktionen, wie die Induktion von „tissue factor“ (TF) ausgelöst werden können.

Methoden

Aktivierte und nichtaktivierte humane Endothelzellen aus Nabelschnurvenen wurden bei einer Schubspannung von 0–3 dyn/cm2 mit neutrophilen Granulozyten und Monozyten in einer Flusskammer koinkubiert. Ausgewertet wurden die Leukozytenadhäsion und die darauf folgende TF-Expression auf adhärenten Monozyten.

Ergebnisse

Bei 2–3 dyn/cm2 wurde eine relevante Adhäsion nur auf Tumor-Nekrose-Faktor- (TNF-)α-aktiviertem Endothel beobachtet. Unter 1 dyn/cm2 stieg die Adhäsion jedoch auch auf nichtaktiviertem Endothel steil an. Jene strömungsbedingte Adhäsion wurde von einer Steigerung der TF-Expression begleitet, die sich unter statischen Bedingungen nicht mehr zwischen aktivierten und nichtaktivierten Kokulturen unterschied.

Schlussfolgerung

Verminderte Scherkräfte scheinen auch ohne weitere Trigger direkt Entzündungsreaktionen auslösen zu können.

Abstract

Background

During malperfusion and inflammation leukocyte adhesion is common. The purpose of this study was to examine the effects of reduced shear stress on leukocyte-endothelial interactions and subsequent inflammatory reactions such as up-regulation of tissue factor.

Methods

Isolated neutrophils and monocytes were co-incubated with human umbilical venous endothelium at 0–3 dynes/cm2 in a flow chamber. Adhesion and tissue factor expression on adherent leukocytes were examined at various flow conditions.

Results

At 2–3 dynes/cm2 adhesion occurred only on TNFα-activated endothelium. Below 1 dyne/cm2 similarly increased adhesion was also observed on non-activated endothelium. As was observed for leukocyte adhesion, these shear stress-dependent cell interactions also resulted in an up-regulation of tissue factor on adherent monocytes from non-activated co-cultures.

Conclusion

Apart from additional activators of inflammation, reduced shear forces may directly contribute to inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Abraham E, Reinhart K, Opal S et al. (2003) Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. JAMA 290:238–247

    Article  CAS  PubMed  Google Scholar 

  2. Atherton A, Born G (1972) Quantitative investigation of the adhesiveness of circulating polymorphonuclear leukocytes to blood vessel walls. J Physiol 222:447–474

    CAS  PubMed  Google Scholar 

  3. Backer D de, Sakr Y, Dubois M, Creteur J, Vincent JL (2003) Microvascular alterations are independent of systemic factors in patients with septic shock. Intensive Care Med 29:S10

    Google Scholar 

  4. Bauer P, Lush CW, Kvietys PR, Russell JM, Granger DN (2000) Role of endotoxin in the expression of endothelial selectins after cecal ligation and perforation. Am J Physiol Regul Integr Comp Physiol 278:R1140–R1147

    CAS  PubMed  Google Scholar 

  5. Bauer P, Welbourne T, Shigematsu T, Russell J, Granger DN (2000) Endothelial expression of selectins during endotoxin preconditioning. Am J Physiol Regul Integr Comp Physiol 279:R2015–R2021

    CAS  PubMed  Google Scholar 

  6. Bienvenu K, Granger DN (1993) Molecular determinants of shear rate-dependent leukocyte adhesion in postcapillary venules. Am J Physiol 264:H1504–H1508

    CAS  PubMed  Google Scholar 

  7. Collins PW, Noble KE, Reittie JR et al. (1995) Induction of tissue factor expression in human monocyte/endothelium cocultures. Br J Haematol 91:963–970

    CAS  PubMed  Google Scholar 

  8. Creasey AA, Chang AC, Feigen L et al. (1993) Tissue factor pathway inhibitor reduces mortality from Escherichia coli septic shock. J Clin Invest 91:2850–2860

    CAS  PubMed  Google Scholar 

  9. Ellis CG, Bateman RM, Sharpe MD, Sibbald WJ, Gill R (2002) Effect of a maldistribution of microvascular blood flow on capillary O2 extraction in sepsis. Am J Physiol Heart Circ Physiol 282:H156–H164

    CAS  PubMed  Google Scholar 

  10. Firrell JC, Lipowsky HH (1989) Leukocyte margination and deformation in mesenteric venules of rat. Am J Physiol Heart Circ Physiol 25:H1667–H1674

    Google Scholar 

  11. Fitzal F, DeLano FA, Young C, Schmid-Schonbein GW (2002) Early capillary no-reflow during low-flow reperfusion after hind limb ischemia in the rat. Ann Plast Surg 49:170–180

    Article  PubMed  Google Scholar 

  12. Hagiwara H, Mitsumata M, Yamane T, Jin X, Yoshida Y (1998) Laminar shear stress-induced GRO mRNA and protein expression in endothelial cells. Circulation 98:2584–2590

    CAS  PubMed  Google Scholar 

  13. House SD, Lipowsky HH (1987) Leukocyte-endothelium adhesion: microhemodynamics in mesentery of the cat. Microvasc Res 34:363–379

    Article  CAS  PubMed  Google Scholar 

  14. Jaeschke H, Smith CW (1997) Mechanisms of neutrophil-induced parenchymal cell injury. J Leukoc Biol 61:647–653

    CAS  PubMed  Google Scholar 

  15. Jonge E de, Dekkers PE, Creasey AA, Hack CE et al. (2000) Tissue factor pathway inhibitor dose-dependently inhibits coagulation activation without influencing the fibrinolytic and cytokine response during human endotoxemia. Blood 95:1124 −1129

    PubMed  Google Scholar 

  16. Kato H, Uchimura I, Nawa C, Kawakami A, Numano F (2001) Fluid shear stress suppresses interleukin 8 production by vascular endothelial cells. Biorheology 38:347–353

    CAS  PubMed  Google Scholar 

  17. Kuijper PH, Gallardo Torres HI, Lammers JW, Sixma JJ, Koenderman L, Zwaginga JJ (1997) Platelet and fibrin deposition at the damaged vessel wall: cooperative substrates for neutrophil adhesion under flow conditions. Blood 89:166–175

    CAS  PubMed  Google Scholar 

  18. Lawrence MB (2001) In vitro flow models of leukocyte adhesion. In: Ley K (Hrsg) Physiology of inflammation. University Press, New York Oxford, pp 204–221

  19. Lawrence MB, Smith CW, Eskin SG, McIntire LV (1990) Effect of venous shear stress on CD18-mediated neutrophil adhesion to cultured endothelium. Blood 75:227–237

    CAS  PubMed  Google Scholar 

  20. Levi M, Keller TT, Gorp E van, Cate H ten (2003) Infection and inflammation and the coagulation system. Cardiovasc Res 60:26–39

    Article  CAS  PubMed  Google Scholar 

  21. Lorenzet R, Napoleone E, Celi A, Pellegrini G, Di Santo A (1998) Cell-cell interaction and tissue factor expression. Blood Coagul Fibrinolysis 9 [Suppl 1]:S49–S59

  22. Lush CW, Cepinskas G, Sibbald WJ, Kvietys PR (2001) Endothelial E- and P-selectin expression in iNOS-deficient mice exposed to polymicrobial sepsis. Am J Physiol Gastrointest Liver Physiol 280:G291–G297

    CAS  PubMed  Google Scholar 

  23. Mackman N (2003) The role of the tissue factor-thrombin pathway in cardiac ischemia-reperfusion injury. Semin Vasc Med 3:193–198

    Article  PubMed  Google Scholar 

  24. Mitchell DJ, Li P, Reinhardt PH, Kubes P (2000) Importance of L-selectin-dependent leukocyte-leukocyte interactions in human whole blood. Blood 95:2954–2959

    CAS  PubMed  Google Scholar 

  25. Nohe B, Zanke C, Johannes T, Kiefer T, Dieterich HJ (2002) Effects of magnetic cell separation on monocyte adhesion to endothelial cells under flow. APMIS 110:299–308

    Article  PubMed  Google Scholar 

  26. Nohe B, Kiefer RT, Ploppa A, Haeberle HA, Schroeder TH, Dieterich HJ (2003) The effects of fresh frozen plasma on neutrophil-endothelial interactions. Anesth Analg 97:216–221

    Article  PubMed  Google Scholar 

  27. Peters K, Unger RE, Brunner J, Kirkpatrick CJ (2003) Molecular basis of endothelial dysfunction in sepsis. Cardiovasc Res 60:49–57

    Article  CAS  PubMed  Google Scholar 

  28. Piper RD, Pitt Hyde ML, Anderson LA, Sibbald WJ, Potter RF (1998) Leukocyte activation and flow behavior in rat skeletal muscle in sepsis. Am J Respir Crit Care Med 157:129–134

    CAS  PubMed  Google Scholar 

  29. Randolph MM, White GL, Kosanke SD et al. (1998) Attenuation of tissue thrombosis and hemorrhage by ala-TFPI does not account for its protection against E. coli — a comparative study of treated and untreated non-surviving baboons challenged with LD100 E. coli. Thromb Haemost 79:1048–1053

    CAS  PubMed  Google Scholar 

  30. Ruf W, Mueller BM (1999) Tissue factor signaling. Thromb Haemost 82:175–182

    CAS  PubMed  Google Scholar 

  31. Sakr Y, Dubois M, Backer D de, Creteur J, Vincent JL (2003) Persistent microcirculatory alterations are associated with organ failure and death in septic shock. Intensive Care Med 29:S66

    Google Scholar 

  32. Singbartl K, Ley K (2000) Protection from ischemia-reperfusion induced severe acute renal failure by blocking E-selectin. Crit Care Med 28:2507–2514

    Article  CAS  PubMed  Google Scholar 

  33. Smith ML, Smith MJ, Lawrence MB, Ley K (2002) Viscosity-independent velocity of neutrophils rolling on P-selectin in vitro or in vivo. Microcirculation 9:523–536

    Article  CAS  PubMed  Google Scholar 

  34. Spronk PE, Ince C, Gardien MJ et al. (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360:1395–1396

    Article  PubMed  Google Scholar 

  35. Taylor FB Jr (1997) Tissue factor and thrombin in posttraumatic systemic inflammatory response syndrome. Crit Care Med 25:1774–1775

    Article  PubMed  Google Scholar 

  36. Vedder NB, Winn RK, Rice CL et al. (1988) A monoclonal antibody to the adherence-promoting leukocyte glycoprotein, CD18, reduces organ injury and improves survival from hemorrhagic shock and resuscitation in rabbits. J Clin Invest 81:939–944

    CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Nohé.

Additional information

Teilweise gefördert durch das fortüne-Programm der Medizinischen Fakultät des Universitätsklinikum Tübingen (Projektnummer 1211056 und 777–0-0).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nohé, B., Johannes, T., Schmidt, V. et al. Einfluss verminderter Scherkräfte auf Entzündungsreaktionen in vitro. Anaesthesist 54, 773–780 (2005). https://doi.org/10.1007/s00101-005-0852-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-005-0852-z

Schlüsselwörter

Keywords

Navigation