Skip to main content

Advertisement

Log in

Assessing bicycle-related trauma using the biomarker S100B reveals a correlation with total injury severity

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Purpose

Worldwide, the use of bicycles, for both recreation and commuting, is increasing. S100B, a suggested protein biomarker for cerebral injury, has been shown to correlate to extracranial injury as well. Using serum levels of S100B, we aimed to investigate how S100B could be used when assessing injuries in patients suffering from bicycle trauma injury. As a secondary aim, we investigated how hospital length of stay and injury severity score (ISS) were correlated to S100B levels.

Methods

We performed a retrospective, database study including all patients admitted for bicycle trauma to a level 1 trauma center over a four-year period with admission samples of S100B (n = 127). Computerized tomography (CT) scans were reviewed and remaining data were collected from case records. Univariate- and multivariate regression analyses, linear regressions and comparative statistics (Mann–Whitney) were used where appropriate.

Results

Both intra- and extracranial injuries were correlated with S100B levels. Stockholm CT score presented the best correlation of an intracranial parameter with S100B levels (p < 0.0001), while the presences of extremity injury, thoracic injury, and non-cervical spinal injury were also significantly correlated (all p < 0.0001, respectively). A multivariate linear regression revealed that Stockholm CT score, non-cervical spinal injury, and abdominal injury all independently correlated with levels of S100B. Patients with a ISS > 15 had higher S100 levels than patients with ISS < 16 (p < 0.0001). Patients with extracranial, as well as intracranial- and extracranial injuries, had significantly higher levels of S100B than patients without injuries (p < 0.05 and p < 0.01, respectively). The admission serum levels of S100B (log, µg/L) were correlated with ISS (log) (r = 0.53) and length of stay (log, days) (r = 0.45).

Conclusions

S100B levels were independently correlated with intracranial pathology, but also with the extent of extracranial injury. Length of stay and ISS were both correlated with the admission levels of S100B in bicycle trauma, suggesting S100B to be a good marker of aggregated injury severity. Further studies are warranted to confirm our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pucher J, Buehler R, Seinen M. Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies. Transp Res Part A: Policy Pract. 2011;45(6):451–75. doi:10.1016/j.tra.2011.03.001.

    Google Scholar 

  2. Constant A, Lagarde E. Protecting vulnerable road users from injury. PLoS Med. 2010;7(3):e1000228. doi:10.1371/journal.pmed.1000228.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Edirisinghe PA, Kitulwatte ID, Senarathne UD. Injuries in the vulnerable road user fatalities; a study from Sri Lanka. J Forensic Leg Med. 2014;27:9–12. doi:10.1016/j.jflm.2014.07.002.

    Article  CAS  PubMed  Google Scholar 

  4. Teisch LF, Allen CJ, Tashiro J, Golpanian S, Lasko D, Namias N, et al. Injury patterns and outcomes following pediatric bicycle accidents. Pediatr Surg Int. 2015;. doi:10.1007/s00383-015-3756-2.

    PubMed  Google Scholar 

  5. Thompson DC, Rivara FP, Thompson R. Helmets for preventing head and facial injuries in bicyclists. Cochrane Database Syst Rev. 2000(2):CD001855. doi:10.1002/14651858.CD001855.

  6. Amoros E, Chiron M, Martin JL, Thelot B, Laumon B. Bicycle helmet wearing and the risk of head, face, and neck injury: a French case–control study based on a road trauma registry. Inj Prev. 2012;18(1):27–32. doi:10.1136/ip.2011.031815.

    Article  PubMed  Google Scholar 

  7. Bambach MR, Mitchell RJ, Grzebieta RH, Olivier J. The effectiveness of helmets in bicycle collisions with motor vehicles: a case-control study. Accid Anal Prev. 2013;53:78–88. doi:10.1016/j.aap.2013.01.005.

    Article  CAS  PubMed  Google Scholar 

  8. Thompson DC, Nunn ME, Thompson RS, Rivara FP. Effectiveness of bicycle safety helmets in preventing serious facial injury. JAMA. 1996;276(24):1974–5.

    Article  CAS  PubMed  Google Scholar 

  9. Kim JK, Kim S, Ulfarsson GF, Porrello LA. Bicyclist injury severities in bicycle-motor vehicle accidents. Accid Anal Prev. 2007;39(2):238–51. doi:10.1016/j.aap.2006.07.002.

    Article  PubMed  Google Scholar 

  10. Richard JB, Thelot B, Beck F. Evolution of bicycle helmet use and its determinants in France: 2000–2010. Accid Anal Prev. 2013;60:113–20. doi:10.1016/j.aap.2013.08.008.

    Article  PubMed  Google Scholar 

  11. Nolen S, Ekman R, Lindqvist K. Bicycle helmet use in Sweden during the 1990s and in the future. Health Promot Int. 2005;20(1):33–40. doi:10.1093/heapro/dah505.

    Article  PubMed  Google Scholar 

  12. Zibung E, Riddez L, Nordenvall C. Helmet use in bicycle trauma patients: a population-based study. Eur J Trauma Emerg Surg. 2014;. doi:10.1007/s00068-014-0471-y.

    PubMed  Google Scholar 

  13. Papa L, Robinson G, Oli M, Pineda J, Demery J, Brophy G, et al. Use of biomarkers for diagnosis and management of traumatic brain injury patients. Expert Opin Med Diagn. 2008;2(8):937–45. doi:10.1517/17530059.2.8.937.

    Article  PubMed  Google Scholar 

  14. Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun. 1965;19(6):739–44.

    Article  CAS  PubMed  Google Scholar 

  15. Haimoto H, Hosoda S, Kato K. Differential distribution of immunoreactive S100-alpha and S100-beta proteins in normal nonnervous human tissues. Lab Invest. 1987;57(5):489–98.

    CAS  PubMed  Google Scholar 

  16. Thelin EP, Johannesson L, Nelson D, Bellander BM. S100B is an important outcome predictor in traumatic brain injury. J Neurotrauma. 2013;30(7):519–28. doi:10.1089/neu.2012.2553.

    Article  PubMed  Google Scholar 

  17. Thelin EP, Nelson DW, Bellander BM. Secondary peaks of S100B in serum relate to subsequent radiological pathology in traumatic brain injury. Neurocrit Care. 2014;20(2):217–29. doi:10.1007/s12028-013-9916-0.

    Article  CAS  PubMed  Google Scholar 

  18. Raabe A, Kopetsch O, Woszczyk A, Lang J, Gerlach R, Zimmermann M, et al. S-100B protein as a serum marker of secondary neurological complications in neurocritical care patients. Neurol Res. 2004;26(4):440–5. doi:10.1179/016164104225015958.

    Article  PubMed  Google Scholar 

  19. Vos PE, Jacobs B, Andriessen TM, Lamers KJ, Borm GF, Beems T, et al. GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology. 2010;75(20):1786–93. doi:10.1212/WNL.0b013e3181fd62d2.

    Article  CAS  PubMed  Google Scholar 

  20. Unden J, Romner B. Can low serum levels of S100B predict normal CT findings after minor head injury in adults? An evidence-based review and meta-analysis. J Head Trauma Rehabil. 2010;25(4):228–40. doi:10.1097/HTR.0b013e3181e57e22.

    Article  PubMed  Google Scholar 

  21. Unden J, Ingebrigtsen T, Romner B, Scandinavian Neurotrauma C. Scandinavian guidelines for initial management of minimal, mild and moderate head injuries in adults: an evidence and consensus-based update. BMC Med. 2013;11:50. doi:10.1186/1741-7015-11-50.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ghanem G, Loir B, Morandini R, Sales F, Lienard D, Eggermont A, et al. On the release and half-life of S100B protein in the peripheral blood of melanoma patients. Int J Cancer. 2001;94(4):586–90. doi:10.1002/ijc.1504.

    Article  CAS  PubMed  Google Scholar 

  23. Mussack T, Biberthaler P, Kanz KG, Heckl U, Gruber R, Linsenmaier U, et al. Immediate S-100B and neuron-specific enolase plasma measurements for rapid evaluation of primary brain damage in alcohol-intoxicated, minor head-injured patients. Shock. 2002;18(5):395–400.

    Article  PubMed  Google Scholar 

  24. Pelinka LE, Toegel E, Mauritz W, Redl H. Serum S 100 B: a marker of brain damage in traumatic brain injury with and without multiple trauma. Shock. 2003;19(3):195–200.

    Article  CAS  PubMed  Google Scholar 

  25. Savola O, Pyhtinen J, Leino TK, Siitonen S, Niemela O, Hillbom M. Effects of head and extracranial injuries on serum protein S100B levels in trauma patients. J Trauma. 2004;56(6):1229–34. doi:10.1097/01.TA.0000096644.08735.72 (discussion 34).

    Article  CAS  PubMed  Google Scholar 

  26. Dang X, Guan L, Hu W, Du G, Li J. S100B ranks as a new marker of multiple traumas in patients and may accelerate its development by regulating endothelial cell dysfunction. Int J Clin Exp Pathol. 2014;7(7):3818–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ohrt-Nissen S, Friis-Hansen L, Dahl B, Stensballe J, Romner B, Rasmussen LS. How does extracerebral trauma affect the clinical value of S100B measurements? Emerg Med J. 2011;28(11):941–4. doi:10.1136/emj.2010.091363.

    Article  PubMed  Google Scholar 

  28. Routsi C, Stamataki E, Nanas S, Psachoulia C, Stathopoulos A, Koroneos A, et al. Increased levels of serum S100B protein in critically ill patients without brain injury. Shock. 2006;26(1):20–4. doi:10.1097/01.shk.0000209546.06801.d7.

    Article  CAS  PubMed  Google Scholar 

  29. Anderson RE, Hansson LO, Nilsson O, Dijlai-Merzoug R, Settergren G. High serum S100B levels for trauma patients without head injuries. Neurosurgery. 2001;48(6):1255–8 (discussion 8–60).

    CAS  PubMed  Google Scholar 

  30. Pelinka LE, Harada N, Szalay L, Jafarmadar M, Redl H, Bahrami S. Release of S100B differs during ischemia and reperfusion of the liver, the gut, and the kidney in rats. Shock. 2004;21(1):72–6. doi:10.1097/01.shk.0000101672.49265.14.

    Article  CAS  PubMed  Google Scholar 

  31. Stamataki E, Stathopoulos A, Garini E, Kokkoris S, Glynos C, Psachoulia C, et al. Serum S100B protein is increased and correlates with interleukin 6, hypoperfusion indices, and outcome in patients admitted for surgical control of hemorrhage. Shock. 2013;40(4):274–80. doi:10.1097/SHK.0b013e3182a35de5.

    Article  CAS  PubMed  Google Scholar 

  32. Marshall LF, Marshall SB, Klauber MR, Clark MV, Eisenberg HM, Jane JA, et al. A new classification of head-injury based on computerized-tomography. J Neurosurg. 1991;75:S14–20.

    Google Scholar 

  33. Maas AI, Hukkelhoven CW, Marshall LF, Steyerberg EW. Prediction of outcome in traumatic brain injury with computed tomographic characteristics: a comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery. 2005;57(6):1173–82. doi:10.1227/01.NEU.0000186013.63046.6B (discussion -82).

    Article  PubMed  Google Scholar 

  34. Nelson DW, Nystrom H, MacCallum RM, Thornquist B, Lilja A, Bellander BM, et al. Extended analysis of early computed tomography scans of traumatic brain injured patients and relations to outcome. J Neurotrauma. 2010;27(1):51–64. doi:10.1089/neu.2009.0986.

    Article  PubMed  Google Scholar 

  35. Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;2(7872):81–4.

    Article  CAS  PubMed  Google Scholar 

  36. Stevenson M, Segui-Gomez M, Lescohier I, Di Scala C, McDonald-Smith G. An overview of the injury severity score and the new injury severity score. Inj Prev. 2001;7(1):10–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Raabe A, Grolms C, Sorge O, Zimmermann M, Seifert V. Serum S-100B protein in severe head injury. Neurosurgery. 1999;45(3):477–83.

    Article  CAS  PubMed  Google Scholar 

  38. Romner B, Ingebrigtsen T, Kongstad P, Borgesen SE. Traumatic brain damage: serum S-100 protein measurements related to neuroradiological findings. J Neurotrauma. 2000;17(8):641–7. doi:10.1089/089771500415391.

    Article  CAS  PubMed  Google Scholar 

  39. da Rocha AB, Schneider RF, de Freitas GR, Andre C, Grivicich I, Zanoni C, et al. Role of serum S100B as a predictive marker of fatal outcome following isolated severe head injury or multitrauma in males. Clin Chem Lab Med. 2006;44(10):1234–42. doi:10.1515/CCLM.2006.218.

    Article  PubMed  Google Scholar 

  40. Jonsson H, Johnsson P, Hoglund P, Alling C, Blomquist S. Elimination of S100B and renal function after cardiac surgery. J Cardiothorac Vasc Anesth. 2000;14(6):698–701. doi:10.1053/jcan.2000.18444.

    Article  CAS  PubMed  Google Scholar 

  41. Jackson RG, Samra GS, Radcliffe J, Clark GH, Price CP. The early fall in levels of S-100 beta in traumatic brain injury. Clin Chem Lab Med. 2000;38(11):1165–7. doi:10.1515/CCLM.2000.179.

    Article  CAS  PubMed  Google Scholar 

  42. Kanner AA, Marchi N, Fazio V, Mayberg MR, Koltz MT, Siomin V, et al. Serum S100beta: a noninvasive marker of blood-brain barrier function and brain lesions. Cancer. 2003;97(11):2806–13. doi:10.1002/cncr.11409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schiavi P, Laccarino C, Servadei F. The value of the calcium binding protein S100 in the management of patients with traumatic brain injury. Acta Biomed. 2012;83(1):5–20.

    CAS  PubMed  Google Scholar 

  44. Barzo P, Marmarou A, Fatouros P, Corwin F, Dunbar JG. Acute blood-brain barrier changes in experimental closed head injury as measured by MRI and Gd-DTPA. Acta Neurochir Suppl. 1997;70:243–6.

    CAS  PubMed  Google Scholar 

  45. Anderson RE, Hansson LO, Nilsson O, Liska J, Settergren G, Vaage J. Increase in serum S100A1-B and S100BB during cardiac surgery arises from extracerebral sources. Ann Thorac Surg. 2001;71(5):1512–7.

    Article  CAS  PubMed  Google Scholar 

  46. Velmahos GC, Gervasini A, Petrovick L, Dorer DJ, Doran ME, Spaniolas K et al. Routine repeat head CT for minimal head injury is unnecessary. J Trauma. 2006;60(3):494–9; discussion 9–501. doi:10.1097/01.ta.0000203546.14824.0d.

  47. Oertel M, Kelly DF, McArthur D, Boscardin WJ, Glenn TC, Lee JH, et al. Progressive hemorrhage after head trauma: predictors and consequences of the evolving injury. J Neurosurg. 2002;96(1):109–16. doi:10.3171/jns.2002.96.1.0109.

    Article  PubMed  Google Scholar 

  48. Zurek J, Fedora M. The usefulness of S100B, NSE, GFAP, NF-H, secretagogin and Hsp70 as a predictive biomarker of outcome in children with traumatic brain injury. Acta Neurochir (Wien). 2012;154(1):93–103; doi:10.1007/s00701-011-1175-2 (discussion).

  49. Krnjak L, Trunk P, Gersak B, Osredkar J. Correlation of serum S100B concentration with hospital stay in patients undergoing CABG. Acta Clin Croat. 2008;47(4):221–6.

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the ‘Stiftelsen Tornspiran’. Authors of this manuscript, and not the funders, are responsible for its content. The funders had no role in the study design; the collection, analysis, and interpretation of the data; the writing of the manuscript; and the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Thelin.

Ethics declarations

Conflict of interest

Eric P Thelin has previously received lecturer fees from Roche Diagnostics when presenting the Scandinavian guidelines for minimal, mild and moderate head injuries. This has in no way influenced the text and material published in this manuscript. Evelyne Zibung, Louis Riddez and Caroline Nordenvall declare that they have no conflict of interest.

Compliance with ethical requirements

This was a retrospective, database study. All data have been unidentified and are presented on group level, thus it is impossible to identify individual patients. Ethical approval was given by the local ethics committee of Stockholm County, reference number 2010/1920-31/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thelin, E.P., Zibung, E., Riddez, L. et al. Assessing bicycle-related trauma using the biomarker S100B reveals a correlation with total injury severity. Eur J Trauma Emerg Surg 42, 617–625 (2016). https://doi.org/10.1007/s00068-015-0583-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-015-0583-z

Keywords

Navigation