Skip to main content

Advertisement

Log in

Most recent update of preclinical and clinical data on radioresistance and radiosensitivity of high-grade gliomas—a radiation oncologist’s perspective

  • Review Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

This review article discusses the studies concerning advances in radiotherapy of high-grade gliomas published in the second half of 2021.

Methods

A literature search was performed in PubMed using the terms (“gliom* and radio*”) and time limits 1 July 2021–31 December 2021. The articles were then manually selected for relevance to the analyzed topics.

Results

Considerable progress has been made in the preclinical field on the mechanisms of radioresistance and radiosensitization of high-grade gliomas (HGG). However, fewer early-phase (I/II) clinical trials have been performed and, of the latter, even fewer have produced results that justify moving to phase III. In the 6‑month period under consideration, no studies were published that would lead to a change in clinical practice and the overall survival (OS) of patients remained similar to that of 2005, the year in which it increased significantly for the last time thanks to introduction of the alkylating agent temozolomide.

Conclusion

After 17 years of stalemate in improving the OS of patients with HGG, an in-depth analysis of the causes should be carried out in order to identify whether the research efforts conducted so far, including in the radiotherapeutic field, have been the most effective or require improvement. In our opinion, in addition to the therapeutic difficulties related to the biology of HGG tumors (e.g., high infiltrating capacity, multiple resistance mechanisms, blood–brain barrier), some public research policy choices may also play a role, especially in consideration of the limited interest of the pharmaceutical industry in the field of rare cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2‑HG:

2‑Hydroxyglutarate

4‑IPP:

4‑Iodo-6-phenylpyrimidine

ACER3:

Alkaline ceramidase 3

ATR:

Ataxia telangiectasia and RAD3 related

ATRX:

X‑linked locus of alpha thalassemia/mental retardation syndrome

BBB:

Blood–brain barrier

CAT:

Catalase

CCL5:

Chemokine ligand 5

CCNU:

Lomustine

CCR5:

Chemokine receptor 5

CENPB:

Centromere protein B

CHT:

Chemotherapy

CI:

Confidence interval

circHIPK3:

Circular RNA homeodomain interacting protein kinase 3

circRNA:

Circular RNA

CTV:

Clinical target volume

DCE-MRI:

Dynamic contrast-enhanced MRI

DDT:

D‑dopachrome tautomerase

DIPG:

Diffuse intrinsic pontine glioma

DMG:

Diffuse midline glioma

FAZA:

Fluoroazomycin arabinoside

FBXW7:

F‑box and WD repeat domain-containing 7

GARD:

Genome-adjusted radiation dose

GB:

Glioblastoma

GIC:

Glioma-initiating cell

GKRS:

Gamma Knife radiosurgery

HDAC:

Histone deacetylase

HFSRT:

Hypofractionated stereotactic RT

HGF:

Hepatocyte growth factor

HGG:

High-grade glioma

HIF:

Hypoxia-inducible factor

HR:

Hazard ratio

HRS:

Hyper-radiosensitivity

IDH:

Isocitrate dehydrogenase

IR:

Ionizing radiation

iRT:

Intermittent RT

Ktrans:

Volume transfer constant

LDFRT:

Low-dose fractionated RT

LGMN:

Legumain

Lnc RNA:

Long noncoding RNA

MGMT:

O‑6-methylguanine DNA methyltransferase

MIF:

Migration inhibitory factor

miR:

MicroRNA

MRI:

Magnetic resonance imaging

ncRNA:

Non-coding RNA

NRF:

Erythroid-related nuclear factor

NSG:

NOD scid gamma

NTRK:

Neurotrophic tyrosine receptor kinase

OS:

Overall survival

PARP:

Poly (ADP-ribose) polymerase

PDX:

Patient-derived xenograft

PFS:

Progression-free survival

ROS:

Reactive oxygen species

RT:

Radiotherapy

rRT:

Re-irradiation

SASP:

Senescence-associated secretory phenotype

SFRP2:

Secreted frizzled-related protein 2

STAT3:

Signal transducer and activator of transcription 3

TCGA:

The Cancer Genome Atlas

TMZ:

Temozolomide

TRAP1:

TNF receptor-associated protein 1

TTFields:

Tumor-treating fields

TWEAK/Fn14:

TNF-like weak inducer of apoptosis/fibroblast growth factor-inducible 14

UCSC:

University of California Santa Cruz

Ultra-hyper-FRT:

Ultrahyperfractionated RT

Ve:

Extravascular extracellular volume fraction

VEGF:

Vascular endothelial growth factor

WHO:

World Health Organization

YAP:

Yes-associated protein

References

  1. Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, Wu Y, Daldrup-Link HE (2021) Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol Res 171:105780

    Article  CAS  Google Scholar 

  2. King JL, Benhabbour SR (2021) Glioblastoma multiforme—A look at the past and a glance at the future. Pharmaceutics 13:1053. https://doi.org/10.3390/pharmaceutics13071053;

    Article  CAS  Google Scholar 

  3. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumor, Radiotherapy Groups National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  Google Scholar 

  4. Bruno F, Pellerino A, Bertero L, Soffietti R, Rudà R (2021) Targeted therapies in rare brain tumours. Int J Mol Sci 22:7949. https://doi.org/10.3390/ijms22157949

    Article  CAS  Google Scholar 

  5. Nwagwu CD, Adamson DC (2021) Can we rely on synthetic pharmacotherapy for the treatment of glioblastoma? Expert Opin Pharmacother 22:1983–1994

    Article  CAS  Google Scholar 

  6. Wang Y, Zhang J, Li W, Jiang T, Qi S, Chen Z, Kang J, Huo L, Wang Y, Zhuge Q, Gao G, Wu Y, Feng H, Zhao G, Yang X, Zhao H, Wang Y, Yang H, Kang D, Su J, Li L, Jiang C, Li G, Qiu Y, Wang W, Wang H, Xu Z, Zhang L, Wang R (2021) Guideline conformity to the stupp regimen in patients with newly diagnosed glioblastoma multiforme in china. Future Oncol 17(33):4571–4582. https://doi.org/10.2217/fon-2021-0435

    Article  CAS  Google Scholar 

  7. El-Khouly FE, Adil SM, Wiese M, Hulleman E, Hendrikse NH, Kaspers GJL, Kramm CM, Veldhuijzen van Zanten SEM, van Vuurden DG, Network SIOPEDIPG (2021) Complementary and alternative medicine in children with diffuse intrinsic pontine glioma—A SIOPE DIPG network and registry study. Pediatr Blood Cancer 68:e29061

    Article  Google Scholar 

  8. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71

    Article  Google Scholar 

  9. Rakotomalala A, Bailleul Q, Savary C, Arcicasa M, Hamadou M, Huchedé P, Hochart A, Restouin A, Castellano R, Collette Y, Dieny E, Vincent A, Angrand PO, Le Bourhis X, Leblond P, Furlan A, Castets M, Pasquier E, Meignan S (2021) H3.3K27M mutation controls cell growth and resistance to therapies in pediatric glioma cell lines. cancers 13:5551. https://doi.org/10.3390/cancers13215551

    Article  CAS  Google Scholar 

  10. Gao W, Qiao M, Luo K (2021) Long noncoding RNA TP53TG1 contributes to radioresistance of glioma cells via miR-524-5p/ RAB5A axis. Cancer Biother Radiopharm 36:600–612

    CAS  Google Scholar 

  11. Lei D, Sun H, Zhang B (2021) MiR-24 promotes cell growth in human glioma by CDX1/PI3K/akt signaling pathway. Cancer Biother Radiopharm 36:588–599

    CAS  Google Scholar 

  12. Tian W, Zhang Y, Liu H, Jin H, Sun T (2021) LINC01123 potentially correlates with radioresistance in glioma through the miR-151a/CENPB axis. Neuropathology 42(1):3–15. https://doi.org/10.1111/neup.12764. Epub 2021 Sep 13

    Article  CAS  Google Scholar 

  13. Chen W, Wang F, Zhang J, Li C, Hong L (2021) LINC01087 indicates a poor prognosis of glioma patients with preoperative MRI. Funct Integr Genomics 22(1):55–64. https://doi.org/10.1007/s10142-021-00812-w. Epub 2021 Nov 24

    Article  CAS  Google Scholar 

  14. Li G, Lan Q (2021) Exosome-mediated transfer of circ-GLIS3 enhances temozolomide resistance in glioma cells through the miR-548m/MED31 axis. Cancer Biother Radiopharm https://doi.org/10.1089/cbr.2021.0299. Online ahead of print

    Article  Google Scholar 

  15. Chen B, Wang M, Huang R, Liao K, Wang T, Yang R, Zhang W, Shi Z, Ren L, Lv Q, Ma C, Lin Y, Qiu Y (2021) Circular RNA circLGMN facilitates glioblastoma progression by targeting miR-127-3p/LGMN axis. Cancer Lett 522:225–237

    Article  CAS  Google Scholar 

  16. Connolly NP, Galisteo R, Xu S, Bar EE, Peng S, Tran NL, Ames HM, Kim AJ, Woodworth GF, Winkles JA (2021) Elevated fibroblast growth factor-inducible 14 expression transforms proneural-like gliomas into more aggressive and lethal brain cancer. Glia 69:2199–2214

    Article  CAS  Google Scholar 

  17. Keddy C, Neff T, Huan J, Nickerson JP, Beach CZ, Akkari Y, Ji J, Moore S, Nazemi KJ, Corless CL, Beadling C, Woltjer R, Cho YJ, Wood MD, Davare MA (2021) Mechanisms of targeted therapy resistance in a pediatric glioma driven by ETV6-NTRK3 fusion. Cold Spring Harb Mol Case Stud 7:a6109. https://doi.org/10.1101/mcs.a006109

    Article  Google Scholar 

  18. Wu Q, Yin X, Zhao W, Xu W, Chen L (2021) Downregulation of SFRP2 facilitates cancer stemness and radioresistance of glioma cells via activating wnt/β-catenin signaling. PLoS ONE 16:e260864

    Article  CAS  Google Scholar 

  19. Pautrat A, Vassal F, Casteillo F, Magné N, Péoc’h M, Forest F (2021) Glioma associated microglia/macrophages distribution is conserved in glioblastoma regrowth: a morphometric study. Cancer Invest 39:621–626

    Article  CAS  Google Scholar 

  20. Zhang XN, Yang KD, Chen C, He ZC, Wang QH, Feng H, Lv SQ, Wang Y, Mao M, Liu Q, Tan YY, Wang WY, Li TR, Che LR, Qin ZY, Wu LX, Luo M, Luo CH, Liu YQ, Yin W, Wang C, Guo HT, Li QR, Wang B, Chen W, Wang S, Shi Y, Bian XW, Ping YF (2021) Pericytes augment glioblastoma cell resistance to temozolomide through CCL5-CCR5 paracrine signaling. Cell Res 31:1072–1087

    Article  CAS  Google Scholar 

  21. Flor S, Oliva CR, Ali MY, Coleman KL, Greenlee JD, Jones KA, Monga V, Griguer CE (2021) Catalase overexpression drives an aggressive phenotype in glioblastoma. Antioxidants 10:1988. https://doi.org/10.3390/antiox10121988

    Article  CAS  Google Scholar 

  22. Tsuji Y, Nonoguchi N, Okuzaki D, Wada Y, Motooka D, Hirota Y, Toho T, Yoshikawa N, Furuse M, Kawabata S, Miyatake SI, Nakamura H, Yamamoto R, Nakamura S, Kuroiwa T, Wanibuchi M (2021) Chronic pathophysiological changes in the normal brain parenchyma caused by radiotherapy accelerate glioma progression. Sci Rep 11:22110–22021

    Article  Google Scholar 

  23. Sun B, Liu C, Li H, Zhang L, Luo G, Liang S, Lü M (2020) Research progress on the interactions between long non-coding RNAs and microRNAs in human cancer. Oncol Lett 19:595–605

    CAS  Google Scholar 

  24. Verduci L, Tarcitano E, Strano S, Yarden Y, Blandino G (2021) CircRNAs: role in human diseases and potential use as biomarkers. Cell Death Dis 12:468–21

    Article  CAS  Google Scholar 

  25. Palmisciano P, El Ahmadieh TY, Haider AS, Bin Alamer O, Robertson FC, Plitt AR, Aoun SG, Yu K, Cohen-Gadol A, Moss NS, Patel TR, Sawaya R (2021) Thalamic gliomas in adults: a systematic review of clinical characteristics, treatment strategies, and survival outcomes. J Neurooncol 155(3):215–224. https://doi.org/10.1007/s11060-021-03898-1. Epub 2021 Nov 19

    Article  CAS  Google Scholar 

  26. Liu Y, Chen S, Wang S, Soares F, Fischer M, Meng F, Du Z, Lin C, Meyer C, DeCaprio JA, Brown M, Liu XS, He HH (2017) Transcriptional landscape of the human cell cycle. Proc Natl Acad Sci U S A 114:3473–3478

    Article  CAS  Google Scholar 

  27. Trautwein C, Zizmare L, Mäurer I, Bender B, Bayer B, Ernemann U, Tatagiba M, Grau SJ, Pichler BJ, Skardelly M, Tabatabai G (2021) Tissue metabolites in diffuse glioma and their modulations by IDH1 mutation, histology and treatment. JCI Insight 7(3):e153526. https://doi.org/10.1172/jci.insight.153526

    Article  Google Scholar 

  28. Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, Toms S, Idbaih A, Ahluwalia MS, Fink K, Di Meco F, Lieberman F, Zhu JJ, Stragliotto G, Tran D, Brem S, Hottinger A, Kirson ED, Lavy-Shahaf G, Weinberg U, Kim CY, Paek SH, Nicholas G, Bruna J, Hirte H, Weller M, Palti Y, Hegi ME, Ram Z (2017) Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA 318:2306–2316

    Article  CAS  Google Scholar 

  29. Linder B, Schiesl A, Voss M, Rödel F, Hehlgans S, Güllülü Ö, Seifert V, Kögel D, Senft C, Dubinski D (2021) Dexamethasone treatment limits efficacy of radiation, but does not interfere with glioma cell death induced by tumor treating fields. Front Oncol 11:715031

    Article  Google Scholar 

  30. Prasad A, Hurlburt G, Van Antwerp E, Srivastava S, Sriwastava S (2021) A rare case of gliomatosis cerebri lurking beneath the shadows of a stroke mimic. Radiol Case Rep 16:2701–2705

    Article  Google Scholar 

  31. Fleischmann DF, Schön R, Corradini S, Bodensohn R, Hadi I, Hofmaier J, Forbrig R, Thon N, Dorostkar M, Belka C, Niyazi M (2021) Multifocal high-grade glioma radiotherapy safety and efficacy. Radiat Oncol 16:165–21

    Article  Google Scholar 

  32. Zamora PL, Miller SR, Kovoor JJ (2021) Single institution experience in re-irradiation of biopsy-proven diffuse intrinsic pontine gliomas. Childs Nerv Syst 37:2539–2543

    Article  Google Scholar 

  33. Zhang Y, Wang Y, Zhou D, Wang K, Wang X, Wang X, Jiang Y, Zhao M, Yu R, Zhou X (2021) Radiation-induced YAP activation confers glioma radioresistance via promoting FGF2 transcription and DNA damage repair. Oncogene 40:4580–4591

    Article  CAS  Google Scholar 

  34. Li R, Che W, Liang N, Deng S, Song Z, Yang L (2021) Silent FOSL1 enhances the radiosensitivity of glioma stem cells by down-regulating miR-27a-5p. Neurochem Res 46(12):3222–3246. https://doi.org/10.1007/s11064-021-03427-6. Epub 2021 Aug 2

    Article  CAS  Google Scholar 

  35. Frosina G (2013) Development of therapeutics for high grade gliomas using orthotopic rodent models. Curr Med Chem 20:3272–3299

    Article  CAS  Google Scholar 

  36. Frosina G, Ravetti JL, Corvo R, Fella M, Garre ML, Levrero F, Marcello D, Marubbi D, Morana G, Mussap M, Neumaier CE, Profumo A, Raso A, Rosa F, Vagge S, Vecchio D, Verrico A, Zona G, Daga A (2018) Faithful animal modelling of human glioma by using primary initiating cells and its implications for radiosensitization therapy [ARRIVE 1]. Sci Rep 8:14191–14018

    Article  Google Scholar 

  37. Aldape K, Brindle KM, Chesler L, Chopra R, Gajjar A, Gilbert MR, Gottardo N, Gutmann DH, Hargrave D, Holland EC, Jones DTW, Joyce JA, Kearns P, Kieran MW, Mellinghoff IK, Merchant M, Pfister SM, Pollard SM, Ramaswamy V, Rich JN, Robinson GW, Rowitch DH, Sampson JH, Taylor MD, Workman P, Gilbertson RJ (2019) Challenges to curing primary brain tumours. Nat Rev Clin Oncol 16:509–520

    Article  CAS  Google Scholar 

  38. Liu G, Li H, Zhang W, Yu J, Zhang X, Wu R, Niu M, Liu X, Yu R (2021) Csnk1a1 inhibition modulates the inflammatory secretome and enhances response to radiotherapy in glioma. J Cell Mol Med 25:7395–7406

    Article  CAS  Google Scholar 

  39. Cook KM, Shen H, McKelvey KJ, Gee HE, Hau E (2021) Targeting glucose metabolism of cancer cells with dichloroacetate to radiosensitize high-grade gliomas. Int J Mol Sci 22:7265. https://doi.org/10.3390/ijms22147265

    Article  CAS  Google Scholar 

  40. Mapelli P, Callea M, Fallanca F, Castellano A, Bailo M, Scifo P, Bettinardi V, Conte GM, Monterisi C, Rancoita PMV, Incerti E, Vuozzo M, Gianolli L, Terreni M, Anzalone N, Picchio M (2021) 18F-FAZA PET/CT in pretreatment assessment of hypoxic status in high-grade glioma: correlation with hypoxia immunohistochemical biomarkers. Nucl Med Commun 42:763–771

    Article  CAS  Google Scholar 

  41. He L, Bhat K, Ioannidis A, Zhang L, Nguyen NT, Allen JE, Nghiemphu PL, Cloughesy TF, Liau LM, Kornblum HI, Pajonk F (2021) Effects of the DRD2/3 antagonist ONC201 and radiation in glioblastoma. Radiother Oncol 161:140–147

    Article  CAS  Google Scholar 

  42. Lee SH, Kwon HJ, Park S, Kim CI, Ryu H, Kim SS, Park JB, Kwon JT (2021) Macrophage migration inhibitory factor (MIF) inhibitor 4‑IPP downregulates stemness phenotype and mesenchymal trans-differentiation after irradiation in glioblastoma multiforme. PLoS ONE 16:e257375

    Article  CAS  Google Scholar 

  43. Kong S, Ge X, Li X, Liu Z, Zhang R, Yang M, Wang Z, Li Z (2021) SD-36 promotes growth inhibition and induces apoptosis via suppression of mcl‑1 in glioma. J Cell Mol Med 25:8261–8270

    Article  CAS  Google Scholar 

  44. Fletcher-Sananikone E, Kanji S, Tomimatsu N, Macedo Di Cristofaro LF, Kollipara RK, Saha D, Floyd JR, Sung P, Hromas R, Burns TC, Kittler R, Habib AA, Mukherjee B, Burma S (2021) Elimination of radiation-induced senescence in the brain tumor microenvironment attenuates glioblastoma recurrence. Cancer Res 81(23):5935–5947. https://doi.org/10.1158/0008-5472.CAN-21-0752. Epub 2021 Sep 27

    Article  CAS  Google Scholar 

  45. Frosina G, Fontana V, Verzola D, Rosa A, Gaggero G, Garibotto G, Vagge S, Pigozzi S, Daga A (2021) Ultra-hyper-fractionated radiotherapy for high-grade gliomas. J Neurosci Res 99:3182–3203

    Article  CAS  Google Scholar 

  46. Garbarino J, Eckroate J, Sundaram RK, Jensen RB, Bindra RS (2021) Loss of ATRX confers DNA repair defects and PARP inhibitor sensitivity. Transl Oncol 14:101147

    Article  CAS  Google Scholar 

  47. Gu J, Mu N, Jia B, Guo Q, Pan L, Zhu M, Zhang W, Zhang K, Li W, Li M, Wei L, Xue X, Zhang Y, Zhang W (2021) Targeting radiation-tolerant persister cells as a strategy for inhibiting radioresistance and recurrence in glioblastoma. Neuro Oncol 24(7):1056–1070. https://doi.org/10.1093/neuonc/noab288

    Article  CAS  Google Scholar 

  48. Yin H, Cui X (2021) Knockdown of circHIPK3 facilitates temozolomide sensitivity in glioma by regulating cellular behaviors through miR-524-5p/KIF2A-mediated PI3K/AKT pathway. Cancer Biother Radiopharm 36:556–567

    CAS  Google Scholar 

  49. Xue C, Li G, Lu J, Li L (2021) Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression. Signal Transduct Target Ther 6:400–21

    Article  CAS  Google Scholar 

  50. Han C, Wang S, Wang H, Zhang J (2021) Exosomal circ-HIPK3 facilitates tumor progression and temozolomide resistance by regulating miR-421/ZIC5 axis in glioma. Cancer Biother Radiopharm 36:537–548

    CAS  Google Scholar 

  51. Momeny M, Shamsaiegahkani S, Kashani B, Hamzehlou S, Esmaeili F, Yousefi H, Irani S, Mousavi SA, Ghaffari SH (2021) Cediranib, a pan-inhibitor of vascular endothelial growth factor receptors, inhibits proliferation and enhances therapeutic sensitivity in glioblastoma cells. Life Sci 287:120100

    Article  CAS  Google Scholar 

  52. Wang N, Zhu P, Huang R, Sun L, Dong D, Gao Y (2021) Suppressing TRAP1 sensitizes glioblastoma multiforme cells to temozolomide. Exp Ther Med 22:1246

    Article  CAS  Google Scholar 

  53. Seifert C, Balz E, Herzog S, Korolev A, Gaßmann S, Paland H, Fink MA, Grube M, Marx S, Jedlitschky G, Tzvetkov MV, Rauch BH, Schroeder HWS, Bien-Möller S (2021) PIM1 inhibition affects glioblastoma stem cell behavior and kills glioblastoma stem-like cells. Int J Mol Sci 22:11126. https://doi.org/10.3390/ijms222011126

    Article  CAS  Google Scholar 

  54. Dow J, Krysztofiak A, Liu Y, Colon-Rios DA, Rogers FA, Glazer PM (2021) Vulnerability of IDH1 mutant cancers to histone deacetylase inhibition via orthogonal suppression of DNA repair. Mol Cancer Res 19(12):2057–2067. https://doi.org/10.1158/1541-7786.MCR-21-0456. Epub 2021 Sep 17

    Article  CAS  Google Scholar 

  55. Yang Z, Hu N, Wang W, Hu W, Zhou S, Shi J, Li M, Jing Z, Chen C, Zhang X, Yang R, Fu X, Wang X (2022) Loss of FBXW7 correlates with increased IDH1 expression in glioma and enhances IDH1-mutant cancer cell sensitivity to radiation. Cancer Res 82:497–509

    Article  CAS  Google Scholar 

  56. Verma A, Arora A, Bhatt AN, Arya MB, Prasad AK, Parmar VS, Dwarakanath BS (2021) Radiosensitization of calreticulin-overexpressing human glioma cell line by the polyphenolic acetate 7, 8‑diacetoxy-4-methylcoumarin. Cancer Rep: e1326. https://doi.org/10.1002/cnr2.1326. Online ahead of print

    Article  Google Scholar 

  57. Zhao Y, Huang H, Jia CH, Fan K, Xie T, Zhu ZY, Xie ML (2021) Apigenin increases radiosensitivity of glioma stem cells by attenuating HIF-1α-mediated glycolysis. Med Oncol 38:131–21

    Article  CAS  Google Scholar 

  58. Da C, Pu J, Liu Z, Wei J, Qu Y, Wu Y, Shi B, Yang J, He N, Hou P (2021) HACE1-mediated NRF2 activation causes enhanced malignant phenotypes and decreased radiosensitivity of glioma cells. Signal Transduct Target Ther 6:399–21

    Article  CAS  Google Scholar 

  59. Wang J, Zhang Y, Liu L, Yang T, Song J (2021) Circular RNAs: new biomarkers of chemoresistance in cancer. Cancer Biol Med 18:421–436

    Article  CAS  Google Scholar 

  60. Movahedpour A, Khatami SH, Khorsand M, Salehi M, Savardashtaki A, Mirmajidi SH, Negahdari B, Khanjani N, Naeli P, Vakili O, Taheri-Anganeh M (2021) Exosomal noncoding RNAs: Key players in glioblastoma drug resistance. Mol Cell Biochem 476:4081–4092

    Article  CAS  Google Scholar 

  61. Roy PK, Rajesh Y, Mandal M (2021) Therapeutic targeting of membrane-associated proteins in central nervous system tumors. Exp Cell Res 406:112760

    Article  CAS  Google Scholar 

  62. Li Y, Marcu LG, Hull A, Bezak E (2021) Radioimmunotherapy of glioblastoma multiforme—current status and future prospects. Crit Rev Oncol Hematol 163:103395

    Article  Google Scholar 

  63. Singh S, Drude N, Blank L, Desai PB, Königs H, Rütten S, Langen KJ, Möller M, Mottaghy FM, Morgenroth A (2021) Protease responsive nanogels for transcytosis across the blood-brain barrier and intracellular delivery of radiopharmaceuticals to brain tumor cells. Adv Healthc Mater 10(20):e2100812. https://doi.org/10.1002/adhm.202100812. Epub 2021 Sep 6

    Article  Google Scholar 

  64. You F, Zhang C, Liu X, Ji D, Zhang T, Yu R, Gao S (2021) Drug repositioning: Using psychotropic drugs for the treatment of glioma. Cancer Lett 527:140–149

    Article  Google Scholar 

  65. Mazurek M, Rola R (2021) The implications of nitric oxide metabolism in the treatment of glial tumors. Neurochem Int 150:105172

    Article  CAS  Google Scholar 

  66. Bunevicius A, Pikis S, Padilla F, Prada F, Sheehan J (2021) Sonodynamic therapy for gliomas. J Neurooncol 156(1):1–10. https://doi.org/10.1007/s11060-021-03807-6. Epub 2021 Jul 1

  67. Ni S, Chen R, Hu K (2021) Experimental murine models of brainstem gliomas. Drug Discov Today 27(5):1218–1235. https://doi.org/10.1016/j.drudis.2021.12.016. Epub 2021 Dec 2

    Article  Google Scholar 

  68. Wagner PM, Prucca CG, Caputto BL, Guido ME (2021) Adjusting the molecular clock: the importance of circadian rhythms in the development of glioblastomas and its intervention as a therapeutic strategy. Int J Mol Sci 22:8289. https://doi.org/10.3390/ijms22158289

    Article  CAS  Google Scholar 

  69. Aguilar LR, Vilchez ML, Sanabria LNM (2021) Targeting glioblastoma stem cells: the first steps of photodynamic therapy. Photodiagnosis Photodyn Ther 102585. 36:102585. https://doi.org/10.1016/j.pdpdt.2021.102585. Epub 2021 Oct 21

    Article  CAS  Google Scholar 

  70. Lebel AA, Kisembo MV, Soucy MN, Hébert MPA, Morin PJ, Boudreau LH (2021) Molecular characterization of the anticancer properties associated with bee venom and its components in glioblastoma multiforme. Chem Biol Interact 347:109622

    Article  CAS  Google Scholar 

  71. Scirocco E, Cellini F, Zamagni A, Macchia G, Deodato F, Cilla S, Strigari L, Buwenge M, Rizzo S, Cammelli S, Morganti AG (2021) Clinical studies on ultrafractionated chemoradiation: a systematic review. Front Oncol 11:748200

    Article  Google Scholar 

  72. Scott JG, Sedor G, Ellsworth P, Scarborough JA, Ahmed KA, Oliver DE, Eschrich SA, Kattan MW, Torres-Roca JF (2021) Pan-cancer prediction of radiotherapy benefit using genomic-adjusted radiation dose (GARD): a cohort-based pooled analysis. Lancet Oncol 22:1221–1229

    Article  Google Scholar 

  73. Brüningk SC, Peacock J, Whelan CJ, Brady-Nicholls R, Yu HM, Sahebjam S, Enderling H (2021) Intermittent radiotherapy as alternative treatment for recurrent high grade glioma: A modeling study based on longitudinal tumor measurements. Sci Rep 11:20219–20021

    Article  Google Scholar 

  74. Ziu M, Goyal S, Olson JJ (2021) Congress of neurological surgeons systematic review and evidence-based guidelines update on the role of radiation therapy in the management of progressive and recurrent glioblastoma in adults. J Neurooncol 158(2):255–264. https://doi.org/10.1007/s11060-021-03857-w. Epub 2021 Nov 8

    Article  CAS  Google Scholar 

  75. Yakar F, Egemen E, Dere Ü, Sağınç H, Gökdeniz U, Bakırarar B, Gökdeniz CG, Baltalarlı B, Coşkun ME, Acar F (2021) The effectiveness of gamma knife radiosurgery for the management of residual high-grade gliomas: a single institutional study. J Clin Neurosci 95:159–163

    Article  Google Scholar 

  76. Yonezawa H, Ohno M, Igaki H, Miyakita Y, Takahashi M, Tamura Y, Shima S, Matsushita Y, Ichimura K, Narita Y (2021) Outcomes of salvage fractionated re-irradiation combined with bevacizumab for recurrent high-grade gliomas that progressed after bevacizumab treatment. Jpn J Clin Oncol 51:1028–1035

    Article  Google Scholar 

  77. Dixit KS, Sachdev S, Amidei C, Kumthekar P, Kruser TJ, Gondi V, Grimm S, Lukas RV, Nicholas MK, Chmura SJ, Fought AJ, Mehta M, Raizer JJ (2021) A multi-center prospective study of re-irradiation with bevacizumab and temozolomide in patients with bevacizumab refractory recurrent high-grade gliomas. J Neurooncol 155(3):297–306. https://doi.org/10.1007/s11060-021-03875-8. Epub 2021 Oct 24

    Article  CAS  Google Scholar 

  78. Navarria P, Pessina F, Clerici E, Bellu L, Franzese C, Franzini A, Simonelli M, Bello L, Santoro A, Politi SL, D’agostino GR, Casarotti A, Fernandes B, Torri V, Scorsetti M (2021) Re-irradiation for recurrent high grade glioma (HGG) patients: Results of a single arm prospective phase 2 study. Radiother Oncol 167:89–96. https://doi.org/10.1016/j.radonc.2021.12.019. Epub 2021 Dec 22

    Article  CAS  Google Scholar 

  79. Saran F, Welsh L, James A, McBain C, Gattamaneni R, Jefferies S, Harris F, Pemberton K, Schaible J, Bender S, Cseh A, Brada M (2021) Afatinib and radiotherapy, with or without temozolomide, in patients with newly diagnosed glioblastoma: results of a phase I trial. J Neurooncol 155(3):307–317. https://doi.org/10.1007/s11060-021-03877-6. Epub 2021 Nov 17

  80. Zhao M, Fu X, Zhang Z, Li A, Wang X, Li X (2021) Intracranial 131I-chTNT brachytherapy in patients with deep-seated glioma: a single-center experience with 10-year follow-up from china. Nuklearmedizin 60:283–288

    Article  Google Scholar 

  81. Kyriakou I, Yarandi N, Polycarpou E (2021) Efficacy of cannabinoids against glioblastoma multiforme: a systematic review. Phytomedicine 88:153533

    Article  CAS  Google Scholar 

  82. Wang Z, Ren Y, Du F, Sun Y, Jiang W (2021) Tumor treating fields combined with a poly (adenosine diphosphate-ribose) polymerase inhibitor during radiotherapy for rapidly progressing IDH-wildtype diffuse astrocytoma: a case report. J Int Med Res 49:3000605211036847

    CAS  Google Scholar 

  83. Nie S, Zhu Y, Yang J, Xin T, Xue S, Sun J, Mu D, Chen Z, Sun P, Yu J, Hu M (2021) Clinicopathologic analysis of microscopic tumor extension in glioma for external beam radiotherapy planning. BMC Med 19:269–21

    Article  CAS  Google Scholar 

  84. Youn SH, Kim H, Lee SH, Kim JY (2021) Regression and pseudoprogression of pediatric optic pathway glioma in patients treated with proton beam therapy. Pediatr Blood Cancer 69(3):e29434. https://doi.org/10.1002/pbc.29434. Epub 2021 Nov 12

    Article  Google Scholar 

  85. Lesueur P, Doyen J, Lecornu M, Calugaru V, Florescu C, Missohou F, Geffrelot J, Mammar H, Stefan D, Feuvret L, Balosso J (2021) New indications of protontherapy for adults intracranial tumours. Cancer Radiother 25:545–549

    Article  CAS  Google Scholar 

  86. Jazmati D, Steinmeier T, Ahamd KD, Frisch S, Peters S, Schulze Schleithoff S, Bäumer C, Rutkowski S, Frühwald MC, Blase C, Tippelt S, Timmermann B (2021) Feasibility of proton beam therapy for infants with brain tumours: Experiences from the prospective KiProReg registry study. Clin Oncol 33:e295–e304

    Article  CAS  Google Scholar 

  87. Zhang X, Deibert CP, Kim WJ, Jaman E, Rao AV, Lotze MT, Amankulor NM (2021) Autophagy inhibition is the next step in the treatment of glioblastoma patients following the stupp era. Cancer Gene Ther 28:971–983

    Article  CAS  Google Scholar 

  88. Xue T, Ding JS, Li B, Cao DM, Chen G (2021) A narrative review of adjuvant therapy for glioma: hyperbaric oxygen therapy. Med Gas Res 11:155–157

    Article  CAS  Google Scholar 

  89. Zarei M, Hue JJ, Hajihassani O, Graor HJ, Katayama ES, Loftus AW, Bajor D, Rothermel LD, Vaziri-Gohar A, Winter JM (2021) Clinical development of IDH1 inhibitors for cancer therapy. Cancer Treat Rev 103:102334

    Article  Google Scholar 

  90. Herrlinger U, Tzaridis T, Mack F, Steinbach JP, Schlegel U, Sabel M, Hau P, Kortmann RD, Krex D, Grauer O, Goldbrunner R, Schnell O, Bahr O, Uhl M, Seidel C, Tabatabai G, Kowalski T, Ringel F, Schmidt-Graf F, Suchorska B, Brehmer S, Weyerbrock A, Renovanz M, Bullinger L, Galldiks N, Vajkoczy P, Misch M, Vatter H, Stuplich M, Schafer N, Kebir S, Weller J, Schaub C, Stummer W, Tonn JC, Simon M, Keil VC, Nelles M, Urbach H, Coenen M, Wick W, Weller M, Fimmers R, Schmid M, Hattingen E, Pietsch T, Coch C, Glas M, Neurooncology Working Group of the German Cancer Society (2019) Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): A randomised, open-label, phase 3 trial. Lancet 393:678–688

    Article  CAS  Google Scholar 

  91. Frosina G (2015) Limited advances in therapy of glioblastoma trigger re-consideration of research policy. Crit Rev Oncol Hematol 96:257–261

    Article  Google Scholar 

  92. Sant M, Minicozzi P, Lagorio S, Johannesen BT, Marcos-Gragera R, Francisci S, EUROCARE Working Group (2012) Survival of european patients with central nervous system tumors. Int J Cancer 131:173–185

    Article  CAS  Google Scholar 

  93. Grant J, Cottrell R, Cluzeau F, Fawcett G (2000) Evaluating “payback” on biomedical research from papers cited in clinical guidelines: applied bibliometric study. BMJ 320:1107–1111

    Article  CAS  Google Scholar 

  94. Chalmers I (2000) Evaluating “payback” on biomedical research. biomedical funding decisions should be audited. BMJ 321:566

    Article  CAS  Google Scholar 

  95. Baethge C, Goldbeck-Wood S, Mertens S (2019) SANRA—a scale for the quality assessment of narrative review articles. Res Integr Peer Rev 4:5–19

    Article  Google Scholar 

  96. Ziu M, Kim BYS, Jiang W, Ryken T, Olson JJ (2020) The role of radiation therapy in treatment of adults with newly diagnosed glioblastoma multiforme: a systematic review and evidence-based clinical practice guideline update. J Neurooncol 150:215–267

    Article  Google Scholar 

  97. Marples B, Collis SJ (2008) Low-dose hyper-radiosensitivity: past, present, and future. Int J Radiat Oncol Biol Phys 70:1310–1318

    Article  Google Scholar 

  98. Baumann M, DuBois W, Pu A, Freeman J, Suit HD (1992) Response of xenografts of human malignant gliomas and squamous cell carcinomas to fractionated irradiation. Int J Radiat Oncol Biol Phys 23:803–809

    Article  CAS  Google Scholar 

  99. Krause M, Wohlfarth J, Georgi B, Pimentel N, Dorner D, Zips D, Eicheler W, Hessel F, Short SC, Joiner MC, Baumann M (2005) Low-dose hyperradiosensitivity of human glioblastoma cell lines in vitro does not translate into improved outcome of ultrafractionated radiotherapy in vivo. Int J Radiat Biol 81:751–758

    Article  CAS  Google Scholar 

  100. Antoni D, Feuvret L, Biau J, Robert C, Mazeron JJ, Noël G (2021) Radiation guidelines for gliomas. Cancer Radiother 26(1-2):116–128. https://doi.org/10.1016/j.canrad.2021.08.006. Epub 2021 Dec 22

    Article  Google Scholar 

  101. Frosina G (2022) Improving control of high-grade glioma by ultra-hyper-fractionated radiotherapy. J Neurosci Res 100:933–946

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Frosina.

Ethics declarations

Conflict of interest

G. Frosina declares that he has no competing interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frosina, G. Most recent update of preclinical and clinical data on radioresistance and radiosensitivity of high-grade gliomas—a radiation oncologist’s perspective. Strahlenther Onkol 199, 1–21 (2023). https://doi.org/10.1007/s00066-022-02020-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-022-02020-2

Keywords

Navigation