Skip to main content
Log in

Direct dose correlation of MRI morphologic alterations of healthy liver tissue after robotic liver SBRT

Direkte Dosiskorrelation von MRT-morphologischen Veränderungen von gesundem Lebergewebe nach robotergestützter Leber-SBRT

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

For assessing healthy liver reactions after robotic SBRT (stereotactic body radiotherapy), we investigated early morphologic alterations on MRI (magnetic resonance imaging) with respect to patient and treatment plan parameters.

Patients and methods

MRI data at 6–17 weeks post-treatment from 22 patients with 42 liver metastases were analyzed retrospectively. Median prescription dose was 40 Gy delivered in 3–5 fractions. T2- and T1-weighted MRI were registered to the treatment plan. Absolute doses were converted to EQD2 (Equivalent dose in 2Gy fractions) with α/β-ratios of 2 and 3 Gy for healthy, and 8 Gy for modelling pre-damaged liver tissue.

Results

Sharply defined, centroid-shaped morphologic alterations were observed outside the high-dose volume surrounding the GTV. On T2-w MRI, hyperintensity at EQD2 isodoses of 113.3 ± 66.1 Gy2, 97.5 ± 54.7 Gy3, and 66.5 ± 32.0 Gy8 significantly depended on PTV dimension (p = 0.02) and healthy liver EQD2 (p = 0.05). On T1-w non-contrast MRI, hypointensity at EQD2 isodoses of 113.3 ± 49.3 Gy2, 97.4 ± 41.0 Gy3, and 65.7 ± 24.2 Gy8 significantly depended on prior chemotherapy (p = 0.01) and total liver volume (p = 0.05). On T1-w gadolinium-contrast delayed MRI, hypointensity at EQD2 isodoses of 90.6 ± 42.5 Gy2, 79.3 ± 35.3 Gy3, and 56.6 ± 20.9 Gy8 significantly depended on total (p = 0.04) and healthy (p = 0.01) liver EQD2.

Conclusions

Early post-treatment changes in healthy liver tissue after robotic SBRT could spatially be correlated to respective isodoses. Median nominal doses of 10.1–11.3 Gy per fraction (EQD2 79–97 Gy3) induce characteristic morphologic alterations surrounding the lesions, potentially allowing for dosimetric in-vivo accuracy assessments. Comparison to other techniques and investigations of the short- and long-term clinical impact require further research.

Zusammenfassung

Zielsetzung

Zur Beurteilung gesunder Leberreaktionen nach robotergestützter SBRT untersuchten wir frühzeitige morphologische Veränderungen im MRT (Magnetresonanztomographie) hinsichtlich Patienten- und Behandlungsplanparameter.

Patienten und Methoden

MRT-Daten von 22 Patienten von 42 Lebermetastasen wurden 6–17 Wochen nach Behandlung retrospektiv analysiert. Die mediane Verschreibungsdosis betrug 40 Gy in 3–5 Fraktionen. T2- und T1-gewichtete MRT-Sequenzen wurden zum Bestrahlungsplan registriert. Absolute Dosen wurden in EQD2 mit α/β-Verhältnissen von 2 und 3 Gy für die Modellierung von gesundem und 8 Gy für die von vorgeschädigtem Lebergewebe umgerechnet.

Ergebnisse

Scharf definierte, zumeist zentroidförmige morphologische Veränderungen wurden außerhalb des Hochdosisvolumens um das ursprüngliche GTV herum beobachtet. Hyperintensitäten auf T2-gewichtetem MRT bei EQD2-Isodosen von 113,3 ± 66,1 Gy2, 97,5 ± 54,7 Gy3 und 66,5 ± 32,0 Gy8 hingen signifikant von PTV-Dimension (p = 0,02) und gesundem Leber-EQD2 (p = 0,05) ab. Hypointensitäten auf T1-gewichtetem non-Kontrast-MRT bei EQD2-Isodosen von 113,3 ± 49,3 Gy2, 97,4 ± 41,0 Gy3 und 65,7 ± 24,2 Gy8 waren signifikant von vorheriger Chemotherapie (p = 0,01) und dem Gesamtlebervolumen (p = 0,05) abhängig. Hypointensitäten auf T1-gewichtetem Gadolinium-Kontrast-MRT bei EQD2-Isodosen von 90,6 ± 42,5 Gy2, 79,3 ± 35,3 Gy3 und 56,6 ± 20,9 Gy8 hingen signifikant von Gesamtlebervolumen (p = 0,04) und Volumen der gesunden Leber-EQD2 (p = 0,01) ab.

Schlussfolgerung

Nach robotergestützter SBRT konnten frühe postradiogene Veränderungen des gesunden Lebergewebes räumlich zu den entsprechenden Isodosislinien korreliert werden. Mediane nominale Fraktionsdosen von 10,1–11,3 Gy (EQD2 79–97 Gy3) induzieren charakteristische morphologische Veränderungen um die bestrahlten Läsionen, die möglicherweise dosimetrische In-vivo-Genauigkeitsanalysen erlauben. Der Vergleich zu anderen Behandlungsmethoden und Untersuchungen zu klinischen Kurz- und Langzeitfolgen stehen noch aus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sterzing F, Brunner TB, Ernst I et al (2014) Stereotactic body radiotherapy for liver tumors: principles and practical guidelines of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol 190(10):872–881

    Article  PubMed  Google Scholar 

  2. Boda-Heggemann J, Dinter D, Weiss C et al (2012) Hypofractionated image-guided breath-hold SABR (stereotactic ablative body radiotherapy) of liver metastases—clinical results. Radiat Oncol 7:92

    Article  PubMed  PubMed Central  Google Scholar 

  3. Andratschke N, Parys A, Stadtfeld S et al (2016) Clinical results of mean GTV dose optimized robotic guided SBRT for liver metastases. Radiat Oncol 11:74

    Article  PubMed  PubMed Central  Google Scholar 

  4. Klement RJ, Guckenberger M, Alheid H et al (2017) Stereotactic body radiotherapy for oligo-metastatic liver disease – influence of pre-treatment chemotherapy and histology on local tumor control. Radiother Oncol 123(2):227–233

    Article  CAS  PubMed  Google Scholar 

  5. Osmundson EC, Wu Y, Luxton G et al (2015) Predictors of toxicity associated with stereotactic body radiation therapy to the central hepatobiliary tract. Int J Radiat Oncol Biol Phys 91(5):986–994

    Article  PubMed  Google Scholar 

  6. Toesca DAS, Osmundson EC, von Eyben R et al (2017) Assessment of hepatic function decline after stereotactic body radiation therapy for primary liver cancer. Pract Radiat Oncol 7(3):173–182

    Article  PubMed  Google Scholar 

  7. Grimm J, LaCouture T, Croce R et al (2011) Dose tolerance limits and dose volume histogram evaluation for stereotactic body radiotherapy. J Appl Clin Med Phys 12(2):3368

    Article  PubMed  Google Scholar 

  8. LaCouture TA, Xue J, Subedi G et al (2016) Small bowel dose tolerance for stereotactic body radiation therapy. Semin Radiat Oncol 26(2):157–164

    Article  PubMed  Google Scholar 

  9. Goldsmith C, Price P, Cross T et al (2016) Dose-volume histogram analysis of stereotactic body radiotherapy treatment of pancreatic cancer: a focus on duodenal dose constraints. Semin Radiat Oncol 26(2):149–156

    Article  PubMed  Google Scholar 

  10. Pan CC, Kavanagh BD, Dawson LA et al (2010) Radiation-associated liver injury. Int J Radiat Oncol Biol Phys 76(3):94–100

    Article  Google Scholar 

  11. Jung J, Yoon SM, Kim SY et al (2013) Radiation-induced liver disease after stereotactic body radiotherapy for small hepatocellular carcinoma: clinical and dose-volumetric parameters. Radiat Oncol 8:249

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dreher C, Hoyer KI, Fode MM et al (2016) Metabolic liver function after stereotactic body radiation therapy for hepatocellular carcinoma. Acta Oncol 55(7):886–891

    Article  CAS  PubMed  Google Scholar 

  13. Barry A, McPartlin A, Lindsay P et al (2017) Dosimetric analysis of liver toxicity after liver metastasis stereotactic body radiation therapy. Pract Radiat Oncol 7(5):e331–e337. https://doi.org/10.1016/j.prro.2017.03.004

    Article  PubMed  Google Scholar 

  14. Herfarth KK, Hof H, Bahner ML et al (2003) Assessment of focal liver reaction by multiphasic CT after stereotactic single-dose radiotherapy of liver tumors. Int J Radiat Oncol Biol Phys 57:444–451

    Article  PubMed  Google Scholar 

  15. Seidensticker M, Seidensticker R, Mohnike K et al (2011) Quantitative in vivo assessment of radiation injury of the liver using Gd-EOB-DTPA enhanced MRI: tolerance dose of small liver volumes. Radiat Oncol 6:40

    Article  PubMed  PubMed Central  Google Scholar 

  16. Seidensticker M, Burak M, Kalinski T et al (2015) Radiation-induced liver damage: correlation of histopathology with hepatobiliary magnetic resonance imaging, a feasibility study. Cardiovasc Intervent Radiol 38:213–221

    Article  PubMed  Google Scholar 

  17. Seidensticker M, Seidensticker R, Damm R et al (2014) Prospective randomized trial of enoxaparin, pentoxifylline and ursodeoxycholic acid for prevention of radiation-induced liver toxicity. PLoS ONE 9:e112731

    Article  PubMed  PubMed Central  Google Scholar 

  18. Boda-Heggemann J, Attenberger U, Budjan J et al (2016) MRI morphologic alterations after liver SBRT: direct dose correlation with intermodal matching. Strahlenther Onkol 192(9):641–648

    Article  PubMed  Google Scholar 

  19. Sanuki-Fujimoto N, Takeda A, Ohashi T et al (2010) CT evaluations of focal liver reactions following stereotactic body radiotherapy for small hepatocellular carcinoma with cirrhosis: relationship between imaging appearance and baseline liver function. Br J Radiol 83:1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lo SS, Teh BS, Wang JZ et al (2011) Imaging changes after stereotactic body radiation therapy for lung and liver tumors. Expert Rev Anticancer Ther 11:613–620

    Article  PubMed  Google Scholar 

  21. Howells CC, Stinauer MA, Diot Q et al (2012) Normal liver tissue density dose response in patients treated with stereotactic body radiation therapy for liver metastases. Int J Radiat Oncol Biol Phys 84:e441–446

    Article  PubMed  Google Scholar 

  22. Jarraya H, Mirabel X, Taieb S et al (2013) Image-based response assessment of liver metastases following stereotactic body radiotherapy with respiratory tracking. Radiat Oncol 8:24

    Article  PubMed  PubMed Central  Google Scholar 

  23. Richter C, Seco J, Hong TS et al (2014) Radiation-induced changes in hepatocyte-specific Gd-EOB-DTPA enhanced MRI: potential mechanism. Med Hypotheses 83:477–481

    Article  CAS  PubMed  Google Scholar 

  24. Sanuki N, Takeda A, Oku Y et al (2014) Threshold doses for focal liver reaction after stereotactic ablative body radiation therapy for small hepatocellular carcinoma depend on liver function: evaluation on magnetic resonance imaging with Gd-EOB-DTPA. Int J Radiat Oncol Biol Phys 88:306–311

    Article  PubMed  Google Scholar 

  25. Schmid-Tannwald C, Strobl FF, Theisen D et al (2015) Diffusion-weighted MRI before and after robotic radiosurgery (Cyberknife(R)) in primary and secondary liver malignancies: a pilot study. Technol Cancer Res Treat 14:191–199

    Article  CAS  PubMed  Google Scholar 

  26. Lall C, Bhargava P, Sandrasegaran K et al (2015) Three-dimensional conformal radiation therapy in the liver: MRI findings along a time continuum. J Comput Assist Tomogr 39:356–364

    PubMed  Google Scholar 

  27. Haddad MM, Merrell KW, Hallemeier CL et al (2016) Stereotactic body radiation therapy of liver tumors: post-treatment appearances and evaluation of treatment response: a pictorial review. Abdom Radiol (NY) 41(10):2061–2077

    Article  Google Scholar 

  28. Doi H, Shiomi H, Masai N et al (2016) Threshold doses and prediction of visually apparent liver dysfunction after stereotactic body radiation therapy in cirrhotic and normal livers using magnetic resonance imaging. J Radiat Res 57(3):294–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fukugawa Y, Namimoto T, Toya R et al (2017) Radiation-induced liver injury after 3D-conformal radiotherapy for hepatocellular carcinoma: quantitative assessment using Gd-EOB-DTPA-enhanced MRI. Acta Med Okayama 71(1):25–29

    PubMed  Google Scholar 

  30. Olsen CC, Welsh J, Kavanagh BD et al (2009) Microscopic and macroscopic tumor and parenchymal effects of liver stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 73:1414–1424

    Article  CAS  PubMed  Google Scholar 

  31. Kilby W, Dooley JR, Kuduvalli G et al (2010) The CyberKnife Robotic Radiosurgery System in 2010. Technol Cancer Res Treat 9(5):433–452

    Article  CAS  PubMed  Google Scholar 

  32. Vautravers-Dewas C, Dewas S, Bonodeau F et al (2011) Image-guided robotic stereotactic body radiation therapy for liver metastases: is there a dose response relationship? Int J Radiat Oncol Biol Phys 81(3):e39–47

    Article  PubMed  Google Scholar 

  33. Méndez Romero A, Verheij J, Dwarkasing RS et al (2012) Comparison of macroscopic pathology measurements with magnetic resonance imaging and assessment of microscopic pathology extension for colorectal liver metastases. Int J Radiat Oncol Biol Phys 82(1):159–166

    Article  PubMed  Google Scholar 

  34. Chan M, Grehn M, Cremers F et al (2017) Dosimetric implications of residual tracking errors during robotic SBRT of liver metastases. Int J Radiat Oncol Biol Phys 97(4):839–848

    Article  PubMed  Google Scholar 

  35. Blanck O, Wang L, Baus W et al (2016) Inverse treatment planning for spinal robotic radiosurgery: an international multi-institutional benchmark trial. J Appl Clin Med Phys 17(3):313–330

    Article  PubMed  PubMed Central  Google Scholar 

  36. Malinowski K, McAvoy TJ, George R et al (2013) Maintaining tumor targeting accuracy in real-time motion compensation systems for respiration-induced tumor motion. Med Phys 40(7):71709

    Article  PubMed  PubMed Central  Google Scholar 

  37. Michaely HJ, Morelli JN, Budjan J et al (2013) CAIPIRINHA-Dixon-TWIST (CDT)-volume-interpolated breath-hold examination (VIBE): a new technique for fast time-resolved dynamic 3‑dimensional imaging of the abdomen with high spatial resolution. Invest Radiol 48:590–597

    Article  CAS  PubMed  Google Scholar 

  38. Morelli JN, Michaely HJ, Meyer MM et al (2013) Comparison of dynamic and liver-specific gadoxetic acid contrast-enhanced MRI versus apparent diffusion coefficients. PLoS ONE 8:e61898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kanai T, Kadoya N, Ito K et al (2014) Evaluation of accuracy of B‑spline transformation-based deformable image registration with different parameter settings for thoracic images. J Radiat Res 55:1163–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ger RB, Yang J, Ding Y et al (2017) Accuracy of deformable image registration on magnetic resonance images in digital and physical phantoms. Med Phys 44(10):5153–5161. https://doi.org/10.1002/mp.12406

    Article  CAS  PubMed  Google Scholar 

  41. Fukumitsu N, Nitta K, Terunuma T et al (2017) Registration error of the liver CT using deformable image registration of MIM Maestro and Velocity AI. Bmc Med Imaging 17(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  42. Milano MT, Constine LS, Okunieff P (2008) Normal tissue toxicity after small field hypofractionated stereotactic body radiation. Radiat Oncol 3:36

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dawson LA, Ten Haken RK (2005) Partial volume tolerance of the liver to radiation. Semin Radiat Oncol 15:279–283

    Article  PubMed  Google Scholar 

  44. Son SH, Jang HS, Lee H et al (2013) Determination of the alpha/beta ratio for the normal liver on the basis of radiation-induced hepatic toxicities in patients with hepatocellular carcinoma. Radiat Oncol 8:61

    Article  PubMed  PubMed Central  Google Scholar 

  45. Moustakis C, Blanck O, Ebrahimi Tazehmahalleh F et al (2017) Planning benchmark study for SBRT of early stage NSCLC: results of the DEGRO Working Group Stereotactic Radiotherapy. Strahlenther Onkol 193(10):780–790. https://doi.org/10.1007/s00066-017-1151-8

    Article  PubMed  Google Scholar 

  46. Dollinger M, Jung EM, Beyer L et al (2014) Irreversible electroporation ablation of malignant hepatic tumors: subacute and follow-up CT appearance of ablation zones. J Vasc Interv Radiol 25(10):1589–1594

    Article  PubMed  Google Scholar 

  47. Cheng W, Xiao L, Ainiwaer A et al (2015) Molecular responses of radiation-induced liver damage in rats. Mol Med Rep 11(4):2592–2600

    Article  CAS  PubMed  Google Scholar 

  48. Tetreau R, Llacer C, Riou O et al (2017) Evaluation of response after SBRT for liver tumors. Rep Pract Oncol Radiother 22:170–175

    Article  PubMed  Google Scholar 

  49. Yuan Y, Andronesi OC, Bortfeld TR et al (2013) Feasibility study of in vivo MRI based dosimetric verification of proton end-of-range for liver cancer patients. Radiother Oncol 106:378–382

    Article  PubMed  Google Scholar 

  50. Pollom EL, Chin AL, Diehn M et al (2017) Normal tissue constraints for abdominal and thoracic stereotactic body radiotherapy. Semin Radiat Oncol 27(3):197–208

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The Velocity software was provided within the framework of a research agreement between the University Medical Center Mannheim and Varian Medical Systems (USA). We especially thank Yvette Bellingan (Varian, USA) for the excellent assistance with the software. We would also kindly thank Dr. Thorsten Peter (Güstrow, Germany) for his significant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit Boda-Heggemann MD.

Ethics declarations

Conflict of interest

J. Boda-Heggemann, A. Jahnke, M.K.H. Chan, L.S. Ghaderi Ardekani, P. Hunold, J.P. Schäfer, S. Huttenlocher, S. Wurster, D. Rades, G. Hildebrandt, F. Lohr, J. Dunst, F. Wenz, and O. Blanck declare that they have no competing interests.

Ethical standards

This retrospective study was approved by the local ethics committees of the medical faculty of the universities of Rostock (A2016-0008) for the clinical part and Kiel (D458/17) for the response assessment part.

Additional information

J. Boda-Heggemann and A. Jahnke contributed equally to this publication

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boda-Heggemann, J., Jahnke, A., Chan, M.K.H. et al. Direct dose correlation of MRI morphologic alterations of healthy liver tissue after robotic liver SBRT. Strahlenther Onkol 194, 414–424 (2018). https://doi.org/10.1007/s00066-018-1271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-018-1271-9

Keywords

Schlüsselwörter

Navigation