Skip to main content
Log in

Automated IMRT planning in Pinnacle

A study in head-and-neck cancer

Automatisierte IMRT-Planung mit Pinnacle

Eine Studie zu Kopf-Hals-Tumoren

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

A Correction to this article was published on 27 October 2017

This article has been updated

Abstract

Purpose

This study evaluates the performance and planning efficacy of the Auto-Planning (AP) module in the clinical version of Pinnacle 9.10 (Philips Radiation Oncology Systems, Fitchburg, WI, USA).

Methods and materials

Twenty automated intensity-modulated radiotherapy (IMRT) plans were compared with the original manually planned clinical IMRT plans from patients with oropharyngeal cancer.

Results

Auto-Planning with IMRT offers similar coverage of the planning target volume as the original manually planned clinical plans, as well as better sparing of the contralateral parotid gland, contralateral submandibular gland, larynx, mandible, and brainstem. The mean dose of the contralateral parotid gland and contralateral submandibular gland could be reduced by 2.5 Gy and 1.7 Gy on average. The number of monitor units was reduced with an average of 143.9 (18%). Hands-on planning time was reduced from 1.5–3 h to less than 1 h.

Conclusions

The Auto-Planning module was able to produce clinically acceptable head and neck IMRT plans with consistent quality.

Zusammenfassung

Ziele

Diese Studie untersucht die Leistungsfähigkeit und Planungseffektivität des Auto-Planning-Moduls in der klinischen Version von Pinnacle 9.10 (Philips Radiation Oncology Systems, Fitchburg, WI, USA).

Methoden und Material

Zwanzig automatisch erstellte Pläne für die intensitätsmodulierte Strahlentherapie (IMRT) wurden mit den ursprünglichen manuell erstellten klinischen IMRT-Plänen von Patienten mit Oropharynxkarzinom verglichen.

Ergebnisse

Die automatisch erstellten IMRT-Pläne bieten eine vergleichbare Deckung des Planungszielvolumens (PTV) wie die ursprünglichen, manuell erstellten klinischen Pläne sowie eine verbesserte Schonung der kontralateralen Ohrspeicheldrüse, der kontralateralen Unterkieferspeicheldrüse, des Kehlkopfs, des Unterkiefers und des Hirnstamms. Die mittlere Dosis der kontralateralen Ohr- und kontralateralen Unterkieferspeicheldrüse konnte um durchschnittlich 2,5 bzw. 1,7 Gy reduziert werden. Die Anzahl der Monitoreinheiten wurde im Durchschnitt um 143,9 (18 %) reduziert. Die praktische Planungszeit wurde von 1,5–3 h auf weniger als 1 h minimiert.

Schlussfolgerung

Das Auto-Planning-Modul war in der Lage, klinisch akzeptable Kopf-Hals-IMRT-Pläne mit konsistenter Qualität zu produzieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 27 October 2017

    Correction to:

Abbreviations

AP:

Auto-Planning

CI:

Conformity index

\(D_{2\mathrm{\% }}\) :

Near-maximum dose

\(D_{50\mathrm{\% }}\) :

Median dose

\(D_{98\mathrm{\% }}\) :

Near-minimum dose

DMPO:

Direct machine parameter optimization

DVH:

Dose–volume histogram

HI:

Homogeneity index

IMRT:

Intensity-modulated radiotherapy

MU:

Monitor unit

PTV:

Planning target volume

OAR:

Organ at risk

OVH:

Overlapping volume histogram

SIB:

Simultaneous integrated boost

VMAT:

Volumetric modulated arc therapy

V95% :

Percentage of the target volume that receives at least 95% of the prescribed dose

V95% :

Total volume covered by 95% of the prescribed dose

VPTV95% :

Total volume of PTV covered by 95% of the prescribed dose

VPTV :

Total volume of the PTV

References

  1. Nelms BE, Robinson G, Markham J, Velasco K, Boyd S, Narayan S, Wheeler J, Sobczak ML (2012) Variation in external beam treatment plan quality: an inter-institutional study of planners and planning systems. Pract Radiat Oncol 2(4):296–305

    Article  PubMed  Google Scholar 

  2. Xhaferllari I, Wong E, Bzdusek K, Lock M, Chen JZ (2013) Automated IMRT planning with regional optimization using planning scripts. J Appl Clin Med Phys 14(1):4052

    Article  PubMed  Google Scholar 

  3. Wilkens JJ, Alaly JR, Zakarian K, Thorstad WL, Deasy JO (2007) IMRT treatment planning based on prioritizing prescription goals. Phys Med Biol 52(6):1675–1692

    Article  PubMed  Google Scholar 

  4. Voet PW, Dirk ML, Breedveld S, Al-Mamgani A, Incrocci L, Heijmen BJ (2014) Fully automated volumetric modulated arc therapy plan generation for prostate cancer patients. Int J Radiat Oncol Biol Phys 88(5):1175–1179

    Article  PubMed  Google Scholar 

  5. Li X, Quan EM, Pan X, Li Y (2011) A methodology for automatic intensity-modulated radiation treatment planning for lung cancer. Phys Med Biol 56(13):3873–3893

    Article  PubMed  Google Scholar 

  6. Breedveld S, Storchi PRM, Keijzer M, Heemink AW, Heijmen BJM (2007) A novel approach to multi-criteria inverse planning for IMRT. Phys Med Biol 52:6339

    Article  PubMed  Google Scholar 

  7. Moore K, Brame R, Low D, Mutic S (2011) Experience-based quality control of clinical intensity-modulated radiotherapy planning. Int J Radiat Oncol Biol Phys 81(2):545–551. doi:10.1016/j.ijrobp.2010.11.030

    Article  PubMed  Google Scholar 

  8. Wu B, McNutt T, Zahurak M, Simari P, Pang D, Taylor R, Sanguineti G (2012) Fully automated simultaneous integrated boosted intensity modulated radiation therapy treatment planning is feasible for head-and-neck cancer: a prospective clinical study. Int J Radiat Oncol Biol Phys 84(5):647–653

    Article  Google Scholar 

  9. Troost EG, Bussink J, Hoffmann AL, Boerman OC, Oyen WJ, Kaanders JH (2010) 18 F-FLT PET/CT for early response monitoring and dose escalation in oropharyngeal tumors. J Nucl Med 51(6):866–874

    Article  PubMed  Google Scholar 

  10. Kunze-Buch MC, van Kollenburg P (2007) Efficient SIB-IMRT planning of head and neck patients with Pinnacle3-DMPO. Medicamundi 51(2):95–99

    Google Scholar 

  11. Krayenbuehl J, Norton I, Studer G, Guckenberger M (2015) Evaluation of an automated knowledge based treatment planning system for head and neck. Radiat Oncol 10:226. doi:10.1186/s13014-015-0533-2

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hazell I, Bzdusek K, Kumar P et al (2016) Automatic planning of head and neck treatment plans. J Appl Clin Med Phys 17:272–282

    Article  PubMed  Google Scholar 

  13. Cotrutz C, Xing L (2003) IMRT dose shaping with regionally variable penalty scheme. Med Phys 30(4):544–551

    Article  PubMed  Google Scholar 

  14. ICRU report 83 (2010) Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). J ICRU 10:35–36

  15. Paddick I (2000) A simple scoring ratio to index the conformity of radiosurgical treatment plans. J Neurosurg 93:219–222

    PubMed  Google Scholar 

  16. van’t Riet A, Mak AC, Moerland MA et al (1997) A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate. Int J Radiat Oncol Biol Phys 37:731–736

    Article  Google Scholar 

  17. Feuvret L, Noël G, Mazeron JJ, Bey P (2006) Conformity index: a review. Int J Radiat Oncol Biol Phys 64(2):333–342. doi:10.1016/j.ijrobp.2005.09.028

    Article  PubMed  Google Scholar 

  18. Kierkels RGJ, Visser R, Bijl HP, Langendijk JA, van ’t Veld AA, Steenbakkers RJHM, Korevaar EW (2015) Multicriteria optimization enables less experienced planners to efficiently produce high quality treatment plans in head and neck cancer radiotherapy. Radiat Oncol 10:87. doi:10.1186/s13014-015-0385-9

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tol JP, Dahele M, Delany AR, Slotman BJ, Verbakel WFAR (2015) Can knowledge-based DVH predictions be used for automated, individualized quality assurance of radiotherapy treatment plans? Radiat Oncol 10:234

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gintz D, Latifi K, Caudell J, Nelms B, Zhang G, Moros E, Feygelman V (2016) Initial evaluation of automated treatment planning software. J Appl Clin Med Phys 17(3):331–346. doi:10.1120/jacmp.v17i3.6167

    Article  PubMed  Google Scholar 

  21. Dai X, Zhao Y, Liang Z et al (2015) Volumetric-modulated arc therapy for oropharyngeal carcinoma: a dosimetric and delivery efficiency comparison with static-field IMRT. Phys Med 31(1):54–59

    Article  PubMed  Google Scholar 

Download references

Funding

This research was sponsored by Philips Healthcare, Fitchburg, WI, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. A. M. Kusters PhD.

Ethics declarations

Conflict of interest

J. M. A. M. Kusters, K. Bzdusek, P. Kumar, P. G. M. van Kollenburg, M. C. Kunze-Busch, M. Wendling, T. Dijkema and J. H. A. M. Kaanders declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s00066-017-1230-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusters, J.M.A.M., Bzdusek, K., Kumar, P. et al. Automated IMRT planning in Pinnacle. Strahlenther Onkol 193, 1031–1038 (2017). https://doi.org/10.1007/s00066-017-1187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-017-1187-9

Keywords

Schlüsselwörter

Navigation