Skip to main content
Log in

Comparison of prostate positioning guided by three-dimensional transperineal ultrasound and cone beam CT

Vergleich der Prostatapositionierung anhand dreidimensionalem transperinealem Ultraschall und Cone-beam-CT

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Objective

The accuracy of a transperineal three-dimensional ultrasound system (3DUS) was assessed for prostate positioning and compared to fiducial- and bone-based positioning in kV cone beam computed tomography (CBCT) during definitive radiotherapy of prostate cancer.

Methods

Each of the 7 patients had three fiducial markers implanted into the prostate before treatment. Prostate positioning was simultaneously measured by 3DUS and CBCT before each fraction. In total, 177 pairs of 3DUS and CBCT scans were collected. Bone-match and seed-match were performed for each CBCT. Using seed-match as a reference, the accuracy of 3DUS and bone-match was evaluated. Systematic and random errors as well as optimal setup margins were calculated for 3DUS and bone-match.

Results

The discrepancy between 3DUS and seed-match in CBCT (average ± standard deviation) was 0.0 ± 1.7 mm laterally, 0.2 ± 2.0 mm longitudinally, and 0.3 ± 1.7 mm vertically. Using seed-match as a reference, systematic errors for 3DUS were 1.2 mm, 1.1 mm, and 0.9 mm; and random errors were 1.4 mm, 1.8 mm, and 1.6 mm, on lateral, longitudinal, and vertical axes, respectively. By analogy, the difference of bone-match to seed-match was 0.1 ± 1.1 mm laterally, 1.3 ± 3.8 mm longitudinally, and 1.3 ± 4.5 mm vertically. Systematic errors were 0.5 mm, 2.2 mm, and 2.6 mm; and random errors were 1.0 mm, 3.1 mm, and 3.9 mm on lateral, longitudinal, and vertical axes, respectively. The accuracy of 3DUS was significantly higher than that of bone-match on longitudinal and vertical axes, but not on the lateral axis.

Conclusion

Image-guided radiotherapy of prostate cancer based on transperineal 3DUS was feasible, with overall small discrepancy to seed-match in CBCT in this retrospective study. Compared to bone-match, transperineal 3DUS achieved higher accuracy on longitudinal and vertical axes.

Zusammenfassung

Zielsetzung

Bewertung der Genauigkeit eines transperinealen dreidimensionalen Ultraschallsystems (3DUS) für die Prostatapositionierung und Vergleich mit Goldmarker- und knochenbasierter Positionierung in Kilovolt-„Cone-beam“-Computertomographie (CBCT) bei einer definitiven Strahlentherapie des Prostatakarzinoms.

Methoden

Vor Behandlung wurden 7 Patienten je drei Goldmarker in die Prostata implantiert. Die Prostataposition wurde zeitgleich von 3DUS und CBCT vor jeder Fraktion gemessen. Insgesamt wurden 177 Paare von 3DUS- und CBCT-Scans gewonnen. Knochen- und Goldmarker-Koregistrierungen wurden für jede CBCT durchgeführt. Goldmarker-Koregistrierung wurden als Referenz genutzt, um die Genauigkeit der 3DUS und Knochen-Koregistrierung zu bewerten. Systematische und zufällige Fehler sowie optimale Sicherheitsabstände wurden jeweils für 3DUS und Knochen-Koregistrierung berechnet.

Ergebnisse

Die Diskrepanz zwischen 3DUS und Goldmarker-Koregistrierung in CBCT (Mittelwert ± Standardabweichung) betrug lateral 0,0 ± 1,7 mm, longitudinal 0,2 ± 2,0 mm und vertikal 0,3 ± 1,7 mm. Mit Goldmarker-Koregistrierung als Referenz betrugen systematische Fehler für 3DUS 1,2, 1,1 und 0,9 mm, zufällige Fehler 1,4, 1,8 und 1,6 mm jeweils in lateraler, longitudinaler und vertikaler Richtung. In Analogie dazu betrug die Differenz der Knochen-Koregistrierung zur Goldmarker-Koregistrierung 0,1 ± 1,1, 1,3 ± 3,8 und 1,3 ± 4,5 mm in lateraler, longitudinaler und vertikaler Richtung; systematische Fehler waren 0,5, 2,2 und 2,6 mm und zufällige Fehler 1,0, 3,1 und 3,9 mm jeweils in lateraler, longitudinaler und vertikaler Richtung. Die Genauigkeit der 3DUS war signifikant höher als die der Knochen-Koregistrierung in longitudinaler und vertikaler, aber nicht in lateraler Richtung.

Schlussfolgerung

In der retrospektiven Studie war die bildgeführte Strahlentherapie durch den transperinealen 3DUS praktikabel beim Prostatakarzinom mit insgesamt geringer Diskrepanz zu Goldmarker-Koregistrierung in CBCT. Der transperineale 3DUS erzielte eine höhere Genauigkeit in longitudinaler und vertikaler Richtung als die Knochen-Koregistrierung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arcangeli G, Saracino B, Gomellini S et al (2010) A prospective phase III randomized trial of hypofractionation versus conventional fractionation in patients with high-risk prostate cancer. Int J Radiat Oncol Biol Phys 78:11–18

    Article  PubMed  Google Scholar 

  2. Aubry JF, Beaulieu L, Girouard LM et al (2004) Measurements of intrafraction motion and interfraction and intrafraction rotation of prostate by three-dimensional analysis of daily portal imaging with radiopaque markers. Int J Radiat Oncol Biol Phys 60:30–39

    Article  PubMed  Google Scholar 

  3. Ballhausen H, Hieber S, Li M et al (2014) Technical note: millimeter precision in ultrasound based patient positioning: experimental quantification of inherent technical limitations. Med Phys 41:081718

    Article  PubMed  Google Scholar 

  4. Beltran C, Herman M, Davis B (2008) Planning target margin calculations for prostate radiotherapy based on intrafraction and interfraction motion using four localization methods. Int J Radiat Oncol Biol Phys 70:289–295

    Article  PubMed  Google Scholar 

  5. Boda-Heggemann J, Kohler FM, Kupper B et al (2008) Accuracy of ultrasound-based (BAT) prostate-repositioning: a three-dimensional on-line fiducial-based assessment with cone-beam computed tomography. Int J Radiat Oncol Biol Phys 70:1247–1255

    Article  PubMed  Google Scholar 

  6. Cahlon O, Zelefsky MJ, Shippy A et al (2008) Ultra-high dose (86.4 Gy) IMRT for localized prostate cancer: toxicity and biochemical outcomes. Int J Radiat Oncol Biol Phys 71:330–337

    Article  CAS  PubMed  Google Scholar 

  7. Chandra A, Dong L, Huang E et al (2003) Experience of ultrasound-based daily prostate localization. Int J Radiat Oncol Biol Phys 56:436–447

    Article  PubMed  Google Scholar 

  8. Crehange G, Mirjolet C, Gauthier M et al (2012) Clinical impact of margin reduction on late toxicity and short-term biochemical control for patients treated with daily on-line image guided IMRT for prostate cancer. Radiother Oncol 103:244–246

    Article  PubMed  Google Scholar 

  9. Crook JM, Raymond Y, Salhani D et al (1995) Prostate motion during standard radiotherapy as assessed by fiducial markers. Radiother Oncol 37:35–42

    Article  CAS  PubMed  Google Scholar 

  10. Cury FL, Shenouda G, Souhami L et al (2006) Ultrasound-based image guided radiotherapy for prostate cancer: comparison of cross-modality and intramodality methods for daily localization during external beam radiotherapy. Int J Radiat Oncol Biol Phys 66:1562–1567

    Article  PubMed  Google Scholar 

  11. Dearnaley D, Syndikus I, Sumo G et al (2012) Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: preliminary safety results from the CHHiP randomised controlled trial. Lancet Oncol 13:43–54

    Article  PubMed  Google Scholar 

  12. Dearnaley DP, Jovic G, Syndikus I et al (2014) Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: long-term results from the MRC RT01 randomised controlled trial. Lancet Oncol 15:464–473

    Article  PubMed  Google Scholar 

  13. Dobler B, Mai S, Ross C et al (2006) Evaluation of possible prostate displacement induced by pressure applied during transabdominal ultrasound image acquisition. Strahlenther Onkol 182:240–246

    Article  PubMed  Google Scholar 

  14. Fargier-Voiron M, Presles B, Pommier P et al (2016) Evaluation of a new transperineal ultrasound probe for inter-fraction image-guidance for definitive and post-operative prostate cancer radiotherapy. Phys Med 32:499–505

    Article  PubMed  Google Scholar 

  15. Fargier-Voiron M, Presles B, Pommier P et al (2014) Impact of probe pressure variability on prostate localization for ultrasound-based image-guided radiotherapy. Radiother Oncol 111:132–137

    Article  PubMed  Google Scholar 

  16. Foster RD, Solberg TD, Li HS et al (2010) Comparison of transabdominal ultrasound and electromagnetic transponders for prostate localization. J Appl Clin Med Phys 11:2924

    PubMed  Google Scholar 

  17. Gadia R, Leite ET, Gabrielli FG et al (2013) Outcomes of high-dose intensity-modulated radiotherapy alone with 1 cm planning target volume posterior margin for localized prostate cancer. Radiat Oncol 8:285

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ghilezan MJ, Jaffray DA, Siewerdsen JH et al (2005) Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI). Int J Radiat Oncol Biol Phys 62:406–417

    Article  PubMed  Google Scholar 

  19. Kuban DA, Dong L, Cheung R et al (2005) Ultrasound-based localization. Semin Radiat Oncol 15:180–191

    Article  PubMed  Google Scholar 

  20. Kupelian P, Willoughby T, Mahadevan A et al (2007) Multi-institutional clinical experience with the Calypso system in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys 67:1088–1098

    Article  PubMed  Google Scholar 

  21. Kupelian PA, Willoughby TR, Meeks SL et al (2005) Intraprostatic fiducials for localization of the prostate gland: monitoring intermarker distances during radiation therapy to test for marker stability. Int J Radiat Oncol Biol Phys 62:1291–1296

    Article  PubMed  Google Scholar 

  22. Letourneau D, Martinez AA, Lockman D et al (2005) Assessment of residual error for online cone-beam CT-guided treatment of prostate cancer patients. Int J Radiat Oncol Biol Phys 62:1239–1246

    Article  PubMed  Google Scholar 

  23. Li M, Ballhausen H, Hegemann NS et al (2015) A comparative assessment of prostate positioning guided by three-dimensional ultrasound and cone beam CT. Radiat Oncol 10:82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McNair HA, Mangar SA, Coffey J et al (2006) A comparison of CT- and ultrasound-based imaging to localize the prostate for external beam radiotherapy. Int J Radiat Oncol Biol Phys 65:678–687

    Article  PubMed  Google Scholar 

  25. Peeters ST, Heemsbergen WD, Koper PC et al (2006) Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol 24:1990–1996

    Article  PubMed  Google Scholar 

  26. Peng LC, Yang CC, Sim S et al (2007) Dose comparison of megavoltage cone-beam and orthogonal-pair portal images. J Appl Clin Med Phys 8:10–20

    Google Scholar 

  27. Perks JR, Lehmann J, Chen AM et al (2008) Comparison of peripheral dose from image-guided radiation therapy (IGRT) using kV cone beam CT to intensity-modulated radiation therapy (IMRT). Radiother Oncol 89:304–310

    Article  PubMed  Google Scholar 

  28. Pollack A, Zagars GK, Starkschall G et al (2002) Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 53:1097–1105

    Article  PubMed  Google Scholar 

  29. Robinson D, Liu D, Steciw S et al (2012) An evaluation of the Clarity 3D ultrasound system for prostate localization. J Appl Clin Med Phys 13:3753

    PubMed  Google Scholar 

  30. Serago CF, Buskirk SJ, Igel TC et al (2006) Comparison of daily megavoltage electronic portal imaging or kilovoltage imaging with marker seeds to ultrasound imaging or skin marks for prostate localization and treatment positioning in patients with prostate cancer. Int J Radiat Oncol Biol Phys 65:1585–1592

    Article  PubMed  Google Scholar 

  31. Shinohara K, Roach M 3rd (2008) Technique for implantation of fiducial markers in the prostate. Urology 71:196–200

    Article  PubMed  Google Scholar 

  32. Skarsgard D, Cadman P, El-Gayed A et al (2010) Planning target volume margins for prostate radiotherapy using daily electronic portal imaging and implanted fiducial markers. Radiat Oncol 5:52

    Article  PubMed  PubMed Central  Google Scholar 

  33. Van Der Heide UA, Kotte AN, Dehnad H et al (2007) Analysis of fiducial marker-based position verification in the external beam radiotherapy of patients with prostate cancer. Radiother Oncol 82:38–45

    Article  PubMed  Google Scholar 

  34. Van Der Meer S, Bloemen-Van Gurp E, Hermans J et al (2013) Critical assessment of intramodality 3D ultrasound imaging for prostate IGRT compared to fiducial markers. Med Phys 40:071707

    Article  PubMed  Google Scholar 

  35. Van Herk M, Remeijer P, Rasch C et al (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135

    Article  PubMed  Google Scholar 

  36. Wertz H, Lohr F, Dobler B et al (2007) Dosimetric consequences of a translational isocenter correction based on image guidance for intensity modulated radiotherapy (IMRT) of the prostate. Phys Med Biol 52:5655–5665

    Article  CAS  PubMed  Google Scholar 

  37. Wu Q, Ivaldi G, Liang J et al (2006) Geometric and dosimetric evaluations of an online image-guidance strategy for 3D-CRT of prostate cancer. Int J Radiat Oncol Biol Phys 64:1596–1609

    Article  PubMed  Google Scholar 

  38. Zelefsky MJ, Levin EJ, Hunt M et al (2008) Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 70:1124–1129

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Patrick Dominik Thum, Andrea Beisel, Anne Kolberg, Gabriela Danilkiewicz, and Anja Weber for their excellent work as radiation therapists.

Funding

Elekta Germany supports research at the university hospital of the Ludwig Maximilian University. Funding for research with the Clarity® system has been received from Elekta. Elekta had no influence on study design; nor on data collection, analysis, or interpretation; nor on the writing of the manuscript; nor on the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minglun Li.

Ethics declarations

Conflict of interest

H. Ballhausen, N.-S. Hegemann, M. Reiner, S. Tritschler, C. Gratzke, F. Manapov, S. Corradini, and U. Ganswindt declare that they have no competing interests. Elekta supported various congress presentations by C. Belka and M. Li.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Authors’ contributions

M. Li conceived the study, performed measurements, and drafted the manuscript. H. Ballhausen performed the statistical work and contributed to writing the manuscript. N.-S. Hegemann organized fiducial implantations and provided helpful suggestions. F. Manapov performed measurements and provided helpful suggestions. M. Reiner, U. Ganswindt, S. Corradini, and C. Belka helped with study design and provided useful suggestions. S. Tritschler and C. Gratzke implanted fiducial markers in prostates and provided helpful advices. All authors read and approved the final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Ballhausen, H., Hegemann, NS. et al. Comparison of prostate positioning guided by three-dimensional transperineal ultrasound and cone beam CT. Strahlenther Onkol 193, 221–228 (2017). https://doi.org/10.1007/s00066-016-1084-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-016-1084-7

Keywords

Schlüsselwörter

Navigation