Skip to main content

Advertisement

Log in

Changes in pulmonary function and influencing factors after high-dose intrathoracic radio(chemo)therapy

Veränderungen der Lungenfunktion sowie Einflussfaktoren nach Hochdosis-Radio(chemo)therapie

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

Using prospectively collected patient-related, dose-related, and pulmonary function test (PFT) data before radiotherapy (RT) and at several follow-up visits after RT, the time course of PFT changes after high-dose radio(chemo)therapy and influencing factors were analyzed.

Materials and methods

From April 2012 to October 2015, 81 patients with non-small-cell lung carcinoma (NSCLC), small cell lung carcinoma (SCLC), or esophageal carcinoma where treated with high-dose radio(chemo)therapy. PFT data were collected before treatment and 6 weeks, 12 weeks, and 6 months after RT. The influence of patient- and treatment-related factors on PFT was analyzed.

Results

Mean forced expiratory volume in 1 s (FEV1) constantly declined during follow-up (p = 0.001). In total, 68% of patients had a reduced FEV1 at 6 months. Mean vital capacity (VC) didn’t change during follow-up (p > 0.05). Mean total lung capacity (TLC) showed a constant decline after RT (p = 0.026). At 6 months, 60% of patients showed a decline in VC and 73% in TLC. The mean diffusion capacity for carbon monoxide (DLCO) declined at 6 and 12 weeks, but recovered slightly at 6 months (p < 0.0005). At 6 months, 86% of patients had a reduced DLCO. After treatment, the partial pressure of CO2 in the blood (pCO2) was increased and pO2 was decreased (p > 0.05). Only the pretreatment PFT classification had a significant influence on the post-RT FEV1.

Conclusion

DLCO seems to be the most reliable indicator for lung tissue damage after thoracic RT. Ventilation parameters appear to be less reliable. Concerning patient- or treatment-related factors, no reliable conclusion can be drawn regarding which factors may be relevant.

Zusammenfassung

Hintergrund

Patientenbezogene, therapiebezogene und Lungenfunktionsdaten („pulmonary function test“, PFT) wurden vor Radiotherapie (RT) und an verschiedenen Nachsorgeterminen nach RT prospektiv gesammelt, um PFT-Veränderungen sowie Einflussfaktoren nach Hochdosis-Radio(chemo)therapie zu analysieren.

Material und Methoden

Zwischen April 2012 und Oktober 2015 wurden 81 Patienten mit nicht-kleinzelligen (NSCLC), kleinzelligen (SCLC) Lungenkarzinomen und Ösophaguskarzinomen mittels Hochdosis-Radio(chemo)therapie behandelt. PFT-Daten wurden vor RT sowie 6 Wochen, 12 Wochen und 6 Monate nach RT erhoben sowie der Einfluss von patienten- und therapieassoziierten Faktoren analysiert.

Ergebnisse

Im Verlauf zeigte sich eine konstante Reduktion der mittleren Einsekundenkapazität (FEV1; p = 0,001). Nach 6 Monaten hatten 68 % der Patienten eine reduzierte FEV1. Die mittlere Vitalkapazität (VC) veränderte sich nicht (p > 0,05). Die mittlere Gesamtlungenkapazität (TLC) zeigte eine konstante Reduktion (p = 0,026). Nach 6 Monaten hatten 60 % der Patienten eine verringerte VC und 75 % eine verringerte TLC. Die mittlere Diffusionskapazität von Kohlenmonoxid (DLCO) sank 6 bzw. 12 Wochen nach RT, wies nach 6 Monaten jedoch eine leichte Erholung auf (p < 0,0005). Insgesamt hatten 86 % der Patienten eine reduzierte DLCO nach 6 Monaten. Nach Therapie nahm der Partialdruck von CO2 im Blut zu und pO2 ab(p > 0,05). Lediglich die PFT-Klassifikation vor Therapie hatte einen signifikanten Einfluss auf die FEV1 nach RT.

Schlussfolgerung

DLCO ist offenbar ein zuverlässiger Parameter zur Abschätzung der Lungengewebsschädigung nach thorakaler Radio(chemo)therapie. Ventilationsparameter erscheinen weniger zuverlässig. Bezüglich der patienten- bzw. therapiebezogenen Einflussfaktoren auf die Lungenfunktion lässt sich keine zuverlässige Aussage treffen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mehta V (2005) Radiation pneumonitis and pulmonary fibrosis in non–small-cell lung cancer: pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys 63:5–24. doi:10.1016/j.ijrobp.2005.03.047

    Article  PubMed  Google Scholar 

  2. Ordu AD, Nieder C, Geinitz H et al (2014) Radio(chemo)therapie beim lokal fortgeschrittenem Plattenepithelkarzinom des Ösophagus. Strahlenther Onkol 191:153–160. doi:10.1007/s00066-014-0779-x

    Article  PubMed  Google Scholar 

  3. Yu W‑W, Zhu Z‑F, Fu X‑L et al (2014) Simultaneous integrated boost intensity-modulated radiotherapy in esophageal carcinoma: early results of a phase II study. Strahlenther Onkol 190:979–986. doi:10.1007/s00066-014-0636-y

    Article  PubMed  Google Scholar 

  4. Abratt RP, Morgan GW (2002) Lung toxicity following chest irradiation in patients with lung cancer. Lung Cancer 35:103–109. doi:10.1016/S0169-5002(01)00334-8

    Article  PubMed  Google Scholar 

  5. Choi NC, Kanarek DJ (1994) Toxicity of thoracic radiotherapy on pulmonary function in lung cancer. Lung Cancer 10:S219–S230. doi:10.1016/0169-5002(94)91685-3

    Article  PubMed  Google Scholar 

  6. Ghafoori P, Marks LB, Vujaskovic Z, Kelsey CR (2008) Radiation-induced lung injury. Assessment, management, and prevention. Oncology (Williston Park, NY) 22:37–47 (discussion 52–3)

    Google Scholar 

  7. Zehentmayr F, Wurstbauer K, Deutschmann H et al (2014) DART-bid: dosisdifferenzierte akzelerierte Radiotherapie, 2 × 1,8 Gy täglich. Strahlenther Onkol 191:256–263. doi:10.1007/s00066-014-0754-6

    Article  PubMed  Google Scholar 

  8. Krengli M, Sacco M, Loi G et al (2008) Pulmonary changes after radiotherapy for conservative treatment of breast cancer: A prospective study. Int J Radiat Oncol Biol Phys 70:1460–1467. doi:10.1016/j.ijrobp.2007.08.050

    Article  PubMed  Google Scholar 

  9. Lopez Guerra LJ, Gomez D, Zhuang Y et al (2012) Changes in pulmonary function after three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, or proton beam therapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 83:e537–e543. doi:10.1016/j.ijrobp.2012.01.019

    Article  PubMed  PubMed Central  Google Scholar 

  10. Borst GR, De Jaeger K, Belderbos J et al (2005) Pulmonary function changes after radiotherapy in non-small-cell lung cancer patients with long-term disease-free survival. Int J Radiat Oncol Biol Phys 62:639–644. doi:10.1016/j.ijrobp.2004.11.029

    Article  PubMed  Google Scholar 

  11. De Jaeger K, Seppenwoolde Y, Boersma LJ et al (2003) Pulmonary function following high-dose radiotherapy of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 55:1331–1340. doi:10.1016/S0360-3016(02)04389-4

    Article  PubMed  Google Scholar 

  12. Abratt RP, Willcox PA (1995) The effect of irradiation on lung function and perfusion in patients with lung cancer. Int J Radiat Oncol Biol Phys 31:915–919. doi:10.1016/0360-3016(94)00513-3

    Article  CAS  PubMed  Google Scholar 

  13. Jaen J, Vazquez G, Alonso E et al (2006) Changes in pulmonary function after incidental lung irradiation for breast cancer: a prospective study. Int J Radiat Oncol Biol Phys 65:1381–1388. doi:10.1016/j.ijrobp.2006.03.008

    Article  PubMed  Google Scholar 

  14. Erven K, Weltens C, Nackaerts K et al (2012) Changes in pulmonary function up to 10 years after locoregional breast irradiation. Int J Radiat Oncol Biol Phys 82:701–707. doi:10.1016/j.ijrobp.2010.12.058

    Article  PubMed  Google Scholar 

  15. Miller KL, Zhou S‑M, Barrier RC Jr et al (2003) Long-term changes in pulmonary function tests after definitive radiotherapy for lung cancer. Int J Radiat Oncol Biol Phys 56:611–615. doi:10.1016/S0360-3016(03)00182-2

    Article  PubMed  Google Scholar 

  16. Stanic S, Paulus R, Timmerman RD et al (2014) No clinically significant changes in pulmonary function following stereotactic body radiation therapy for early- stage peripheral non-small cell lung cancer: an analysis of RTOG 0236. Int J Radiat Oncol Biol Phys 88:1092–1099. doi:10.1016/j.ijrobp.2013.12.050

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fan M, Marks LB, Hollis D et al (2001) Can we predict radiation-induced changes in pulmonary function based on the sum of predicted regional dysfunction? J Clin Oncol 19:543–550

    CAS  PubMed  Google Scholar 

  18. Mehta V (2005) Radiation pneumonitis and pulmonary fibrosis in non-small-cell lung cancer: pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys 63:5–24. doi:10.1016/j.ijrobp.2005.03.047

    Article  PubMed  Google Scholar 

  19. Yuan ST, Frey K, Gross M et al (2012) Changes in global function and regional ventilation and perfusion on SPECT during the course of radiotherapy in patients with non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 82:e631–e638. doi:10.1016/j.ijrobp.2011.07.044

    Article  PubMed  Google Scholar 

  20. Ohashi T, Takeda A, Shigematsu N et al (2005) Differences in pulmonary function before vs. 1 year after hypofractionated stereotactic radiotherapy for small peripheral lung tumors. Int J Radiat Oncol Biol Phys 62:1003–1008. doi:10.1016/j.ijrobp.2004.12.050

    Article  PubMed  Google Scholar 

  21. Gopal R, Starkschall G, Tucker SL et al (2003) Effects of radiotherapy and chemotherapy on lung function in patients with non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 56:114–120. doi:10.1016/S0360-3016(03)00077-4

    Article  PubMed  Google Scholar 

  22. Theuws JC, Seppenwoolde Y, Kwa SL et al (2000) Changes in local pulmonary injury up to 48 months after irradiation for lymphoma and breast cancer. Int J Radiat Oncol Biol Phys 47:1201–1208. doi:10.1016/S0360-3016(00)00546-0

    Article  CAS  PubMed  Google Scholar 

  23. Lopez Guerra LJ, Gomez D, Zhuang Y et al (2012) Change in diffusing capacity after radiation as an objective measure for grading radiation pneumonitis in patients treated for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 83:1573–1579. doi:10.1016/j.ijrobp.2011.10.065

    Article  PubMed  Google Scholar 

  24. Bishawi M, Kim B, Moore W, Bilfinger T (2012) Pulmonary function testing after stereotactic body radiotherapy to the lung. Int J Radiat Oncol Biol Phys 82:e107–e110. doi:10.1016/j.ijrobp.2011.01.037

    Article  PubMed  Google Scholar 

  25. Marks LB, Munley M, Bentel G et al (1997) Physical and biological predictors of changes in whole-lung function following thoracic irradiation. Int J Radiat Oncol Biol Phys 39:563–570

    Article  CAS  PubMed  Google Scholar 

  26. Allen AM, Henning GT, Haken Ten RK et al (2003) Do dose-volume metrics predict pulmonary function changes in lung irradiation? Int J Radiat Oncol Biol Phys 55:921–929. doi:10.1016/S0360-3016(02)04288-8

    Article  CAS  PubMed  Google Scholar 

  27. Guckenberger M, Klement RJ, Kestin LL et al (2013) Lack of a dose-effect relationship for pulmonary function changes after stereotactic body radiation therapy for early-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys 85:1074–1081. doi:10.1016/j.ijrobp.2012.09.016

    Article  PubMed  Google Scholar 

  28. Jaen J, Vazquez G, Alonso E et al (2012) Long-term changes in pulmonary function after incidental lung irradiation for breast cancer: a prospective study with 7‑year follow-up. Int J Radiat Oncol Biol Phys. doi:10.1016/j.ijrobp.2012.07.003

    PubMed  Google Scholar 

  29. Theuws JC, Kwa SL, Wagenaar AC et al (1998) Prediction of overall pulmonary function loss in relation to the 3‑D dose distribution for patients with breast cancer and malignant lymphoma. Radiother Oncol 49:233–243

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Schröder.

Ethics declarations

Conflict of interest

C. Schröder, R. Engenhart-Cabillic, H. Vorwerk, M. Schmidt, W. Huhnt, E. Blank, D. Sidow, and A. Buchali declare that they have no competing interests.

Ethical standards

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975 (in its most recently amended version). Informed consent was obtained from all patients included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schröder, C., Engenhart-Cabillic, R., Vorwerk, H. et al. Changes in pulmonary function and influencing factors after high-dose intrathoracic radio(chemo)therapy. Strahlenther Onkol 193, 125–131 (2017). https://doi.org/10.1007/s00066-016-1067-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-016-1067-8

Keywords

Schlüsselwörter

Navigation