Skip to main content
Log in

Comparison of dosimetric parameters and toxicity in esophageal cancer patients undergoing 3D conformal radiotherapy or VMAT

Vergleich von dosimetrischen Parametern und Toxizität zwischen 3D-konformaler Strahlentherapie und VMAT bei Patienten mit Ösophaguskarzinom

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

Volumetric-modulated arc therapy (VMAT) achieves high conformity to the planned target volume (PTV) and good sparing of organs at risk (OAR). This study compares dosimetric parameters and toxicity in esophageal cancer (EC) patients treated with VMAT and 3D conformal radiotherapy (3D-CRT).

Materials and methods

Between 2007 and 2014, 17 SC patients received neoadjuvant chemoradiation (CRT) with VMAT. Dose–volume histograms and toxicity were compared between these patients and 20 treated with 3D-CRT. All patients were irradiated with a total dose of 45 Gy. All VMAT patients received simultaneous chemotherapy with cisplatin and 5‑fluorouracil (5-FU) in treatment weeks 1 and 5. Of 20 patients treated with 3D-CRT, 13 (65 %) also received CRT with cisplatin and 5‑FU, whereas 6 patients (30 %) received CRT with weekly oxaliplatin and cetuximab, and a continuous infusion of 5‑FU (OE-7).

Results

There were no differences in baseline characteristics between the treatment groups. For the lungs, VMAT was associated with a higher V5 (median 90.1 % vs. 79.7 %; p = 0.013) and V10 (68.2 % vs. 56.6 %; p = 0.014), but with a lower V30 (median 6.6 % vs. 11.0 %; p = 0.030). Regarding heart parameters, VMAT was associated with a higher V5 (median 100.0 % vs. 91.0 %; p = 0.043), V10 (92.0 % vs. 79.2 %; p = 0.047), and Dmax (47.5 Gy vs. 46.3 Gy; p = 0.003), but with a lower median dose (18.7 Gy vs. 30.0 Gy; p = 0.026) and V30 (17.7 % vs. 50.4 %; p = 0.015). Complete resection was achieved in 16 VMAT and 19 3D-CRT patients. Due to systemic progression, 2 patients did not undergo surgery. The most frequent postoperative complication was anastomosis insufficiency, occurring in 1 VMAT (6.7 %) and 5 3D-CRT patients (27.8 %; p = 0.180). Postoperative pneumonia was seen in 2 patients of each group (p = 1.000). There was no significant difference in 3‑year overall (65 % VMAT vs. 45 % 3D-CRT; p = 0.493) or 3‑year progression-free survival (53 % VMAT vs. 35 % 3D-CRT; p = 0.453).

Conclusion

Although dosimetric differences in lung and heart exposure were observed, no clinically relevant impact was detected in either patient group. In a real-life patient cohort, VMAT enables reduction of lung and heart V30 compared to 3D-CRT, which may contribute to reduced toxicity.

Zusammenfassung

Ziel

Die volumetrisch modulierte Rotationstherapie (VMAT) erreicht eine hohe Abdeckung des Planungszielvolumens mit guter Schonung der Risikoorgane. Verglichen wurden dosimetrische Parameter und Toxizität zwischen VMAT und 3D-konformaler Strahlentherapie (3D-CRT) bei Patienten mit Ösophaguskarzinom.

Material und Methoden

Zwischen 2007 und 2014 erhielten 17 Patienten während der neoadjuvanten Radiochemotherapie eine VMAT. Dosis-Volumen-Histogramme und Toxizität wurden mit 20 mit 3D-CRT behandelten Patienten verglichen. Die Gesamtdosis aller Patienten betrug 45 Gy (Tagesdosis 1,8 Gy). Die VMAT-Gruppe erhielt eine simultane Chemotherapie mit Cisplatin und 5‑Fluoruracil (5-FU) in der 1. und 5. Woche. In der 3D-CRT-Gruppe bekamen 13 Patienten (65%) ebenfalls eine Chemotherapie mit Cisplatin und 5‑FU, 6 Patienten (30%) eine wöchentliche Chemotherapie mit Oxaliplatin und Cetuximab, sowie eine kontinuierliche Chemotherapie mit 5‑FU (OE-7).

Ergebnisse

Hinsichtlich der Basischarakteristika zeigte sich kein Unterschied zwischen den Gruppen. Für die Lungen war VMAT mit einer höheren V5 (Median 90,1% vs. 79,7%; p = 0,013) und V10 (68,2% vs. 56,6%; p = 0,014), aber einer niedrigeren V30 assoziiert (Median 6,6% vs. 11,0%; p = 0,030). Für das Herz waren für VMAT V5 (Median 100 % vs. 91 %; p = 0,043), V10 (92 % vs. 79,2 %, p = 0,047) und Dmax (47,5 Gy vs. 46,3 Gy; p = 0,003) höher, die mittlere Dosis (18,7 Gy vs. 30 Gy, p = 0,026) und V30 (17,7 % vs. 50,4 %; p = 0,015) niedriger. Bei 16 VMAT- bzw. 19 3D-CRT-Patienten wurde der Tumor komplett reseziert. Aufgrund eines systemischen Progresses wurden 2 Patienten nicht operiert. Häufigste postoperative Komplikation war die Anastomoseninsuffizienz bei einem VMAT- (6,7 %) und 5 3D-CRT-Patienten (27,8 %; p = 0,180). In jeder Gruppe entwickelten 2 Patienten eine postoperative Pneumonie (p = 1,000). Beim 3‑Jahres-Gesamt- (65 % vs. 45 %; p = 0,493) und progressionsfreien Überleben (53 % vs. 35 %; p = 0,453) zeigte sich kein Unterschied. Ein Lokalrezidiv wurde bei 6 3D-CRT- (30 %) und bei einem VMAT-Patienten (6 %) beobachtet (p = 0,097).

Schlussfolgerung

Dosimetrische Unterschiede der Dosisverteilung in Herz und Lungen waren klinisch nicht relevant. Verglichen mit 3D-CRT reduziert VMAT V30 für Lunge und Herz und somit möglicherweise die Toxizität.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kamangar F, Dores GM, Anderson WF (2006) Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 24(14):2137–2150

    Article  PubMed  Google Scholar 

  2. Zhang Y (2013) Epidemiology of esophageal cancer. World J Gastroenterol 19(34):5598–5606

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kranzfelder M et al (2011) Meta-analysis of neoadjuvant treatment modalities and definitive non-surgical therapy for oesophageal squamous cell cancer. Br J Surg 98(6):768–783

    Article  CAS  PubMed  Google Scholar 

  4. Shapiro J et al (2015) Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): Long-term results of a randomised controlled trial. Lancet Oncol 16(9):1090–1098

    Article  PubMed  Google Scholar 

  5. Sjoquist KM et al (2011) Survival after neoadjuvant chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: An updated meta-analysis. Lancet Oncol 12(7):681–692

    Article  PubMed  Google Scholar 

  6. Fogliata A et al (2015) A broad scope knowledge based model for optimization of VMAT in esophageal cancer: validation and assessment of plan quality among different treatment centers. Radiat Oncol 10:220

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gong G et al (2013) Reduced lung dose during radiotherapy for thoracic esophageal carcinoma: VMAT combined with active breathing control for moderate DIBH. Radiat Oncol 8:291

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kataria T et al (2014) Dosimetric comparison between Volumetric Modulated Arc Therapy (VMAT) vs Intensity Modulated Radiation Therapy (IMRT) for radiotherapy of mid esophageal carcinoma. J Cancer Res Ther 10(4):871–877

    Article  PubMed  Google Scholar 

  9. Zhang WZ et al (2015) Volumetric modulated arc therapy vs. c‑IMRT for the treatment of upper thoracic esophageal cancer. PLoS ONE 10(3):e0121385

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nomura M et al (2012) Predictive factors for radiation pneumonitis in oesophageal cancer patients treated with chemoradiotherapy without prophylactic nodal irradiation. Br J Radiol 85(1014):813–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kumar G et al (2012) Analysis of dose-volume parameters predicting radiation pneumonitis in patients with esophageal cancer treated with 3D-conformal radiation therapy or IMRT. Jpn J Radiol 30(1):18–24

    Article  PubMed  Google Scholar 

  12. Hayashi K et al (2015) Predictive factors for pericardial effusion identified by heart dose-volume histogram analysis in oesophageal cancer patients treated with chemoradiotherapy. Br J Radiol 88(1046):20140168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei X et al (2008) Risk factors for pericardial effusion in inoperable esophageal cancer patients treated with definitive chemoradiation therapy. Int J Radiat Oncol Biol Phys 70(3):707–714

    Article  PubMed  Google Scholar 

  14. Lund M et al (2015) Effects on heart function of neoadjuvant chemotherapy and chemoradiotherapy in patients with cancer in the esophagus or gastroesophageal junction – a prospective cohort pilot study within a randomized clinical trial. Radiat Oncol 10(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  15. Umezawa R et al (2015) Assessment of myocardial metabolic disorder associated with mediastinal radiotherapy for esophageal cancer –a pilot study. Radiat Oncol 10:96

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kuo AH et al (2015) Cardiac and inflammatory biomarkers do not correlate with volume of heart or lung receiving radiation. Radiat Oncol 10(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cozzi L et al (2008) A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy. Radiother Oncol 89(2):180–191

    Article  PubMed  Google Scholar 

  18. Wolff D et al (2009) Volumetric modulated arc therapy (VMAT) vs. serial tomotherapy, step-and-shoot IMRT and 3D-conformal RT for treatment of prostate cancer. Radiother Oncol 93(2):226–233

    Article  PubMed  Google Scholar 

  19. Zhang T et al (2015) Double-arc volumetric modulated therapy improves dose distribution compared to static gantry IMRT and 3D conformal radiotherapy for adjuvant therapy of gastric cancer. Radiat Oncol 10:114

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang X et al (2013) Single-arc volumetric-modulated arc therapy (sVMAT) as adjuvant treatment for gastric cancer: dosimetric comparisons with three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). Med Dosim 38(4):395–400

    Article  PubMed  Google Scholar 

  21. Liu GF et al (2014) Clinical outcomes for gastric cancer following adjuvant chemoradiation utilizing intensity modulated versus three-dimensional conformal radiotherapy. PLoS ONE 9(1):e82642

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fakhrian K et al (2013) Advanced techniques in neoadjuvant radiotherapy allow dose escalation without increased dose to the organs at risk : Planning study in esophageal carcinoma. Strahlenther Onkol 189(4):293–300

    Article  CAS  PubMed  Google Scholar 

  23. Zhao Y et al (2015) Predictive factors for acute radiation pneumonitis in postoperative intensity modulated radiation therapy and volumetric modulated arc therapy of esophageal cancer. Thorac Cancer 6(1):49–57

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lin CY et al (2014) Dosimetric and efficiency comparison of high-dose radiotherapy for esophageal cancer: volumetric modulated arc therapy versus fixed-field intensity-modulated radiotherapy. Dis Esophagus 27(6):585–590

    Article  PubMed  Google Scholar 

  25. Feng M et al (2011) Development and validation of a heart atlas to study cardiac exposure to radiation following treatment for breast cancer. Int J Radiat Oncol Biol Phys 79(1):10–18

    Article  PubMed  Google Scholar 

  26. Fiandra C et al (2012) Different IMRT solutions vs. 3D-conformal radiotherapy in early stage Hodgkin’s Lymphoma: Dosimetric comparison and clinical considerations. Radiat Oncol 7:186

    Article  PubMed  PubMed Central  Google Scholar 

  27. Minn AY et al (2010) Comparison of intensity-modulated radiotherapy and 3‑dimensional conformal radiotherapy as adjuvant therapy for gastric cancer. Cancer 116(16):3943–3952

    Article  PubMed  Google Scholar 

  28. Wang SL et al (2006) Investigation of clinical and dosimetric factors associated with postoperative pulmonary complications in esophageal cancer patients treated with concurrent chemoradiotherapy followed by surgery. Int J Radiat Oncol Biol Phys 64(3):692–699

    Article  PubMed  Google Scholar 

  29. Martel MK et al (1998) Fraction size and dose parameters related to the incidence of pericardial effusions. Int J Radiat Oncol Biol Phys 40(1):155–161

    Article  CAS  PubMed  Google Scholar 

  30. Gagliardi G et al (2010) Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys 76(3 Suppl):S77–S85

    Article  PubMed  Google Scholar 

  31. Chandra A et al (2005) Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer. Radiother Oncol 77(3):247–253

    Article  PubMed  Google Scholar 

  32. Boda-Heggemann J et al (2013) Adjuvant IMRT/XELOX radiochemotherapy improves long-term overall- and disease-free survival in advanced gastric cancer. Strahlenther Onkol 189(5):417–423

    Article  CAS  PubMed  Google Scholar 

  33. Ordu AD et al (2015) Radio(chemo)therapy for locally advanced squamous cell carcinoma of the esophagus: Long-term outcome. Strahlenther Onkol 191(2):153–160

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Habermehl MD.

Ethics declarations

Conflict of interest

S. Münch, S. Aichmeier, A. Hapfelmeier, M.-N. Duma, M. Oechsner, M. Feith, S.E. Combs, and D. Habermehl declare that they have no competing interests.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The local ethics committee supported and approved the retrospective analysis of the included patients (project number: 288/15).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Münch, S., Aichmeier, S., Hapfelmeier, A. et al. Comparison of dosimetric parameters and toxicity in esophageal cancer patients undergoing 3D conformal radiotherapy or VMAT. Strahlenther Onkol 192, 722–729 (2016). https://doi.org/10.1007/s00066-016-1020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-016-1020-x

Keywords

Schlüsselwörter

Navigation