Skip to main content

Advertisement

Log in

Usefulness of a thermoplastic breast bra for breast cancer radiotherapy

A prospective analysis

Nutzen eines thermoplastischen Büstenhalters bei Radiotherapie eines Mammakarzinoms

Eine prospektive Analyse

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

Despite modern techniques, in some patients receiving whole breast radiotherapy (WBI) parts of the heart and the lung might receive doses which are nowadays considered relevant for the development of late morbidity. Our aim was to analyze the usefulness of a thermoplastic breast brassiere to reduce lung and heart doses.

Patients and methods

A total of 29 patients with left-sided and 16 patients with right-sided breast cancer treated with breast conserving surgery and WBI between 2012 and 2013 were included in a prospective study analyzing the effectiveness of a thermoplastic breast bra. WBI was performed using 3D tangential fields up to 50.4 Gy. Treatment planning was performed with and without bra. Several dosimetrical parameters were analyzed comparatively focusing on the heart and ipsilateral lung. For heart dose comparisons, subvolumes like the left anterior descending artery (LAD) and a defined apical region, so-called “apical myocardial territory” (AMT), were defined.

Results

By using the bra, the mean lung dose was reduced by 30.6 % (left-sided cancer) and 29.5 % (right-sided; p < 0.001). The V20Gy for the left lung was reduced by 39.5 % (4.9 vs. 8.1 % of volume; p < 0.001). The mean and maximum heart doses were significantly lower (1.6 vs. 2.1 Gy and 30.7 vs. 39.3 Gy; p = 0.01 and p < 0.001), which also applies to the mean and maximum dose for the AMT (2.5 vs. 4.4 Gy and 31.0 vs. 47.2 Gy; p < 0.01 and p < 0.001). The mean and maximum dose for LAD was lower without reaching significance. No acute skin toxicities > grade 2 were observed.

Conclusion

By using a thermoplastic breast bra, radiation doses to the heart and especially parts of the heart apex and ipsilateral lung can be significantly lowered without additional skin toxicity.

Zusammenfassung

Hintergrund

Trotz moderner Techniken können bei manchen Patientinnen bei der Ganzbrustbestrahlung Areale des Herzens und der Lunge Dosen erhalten, die heute als relevant für Spättoxizitäten gelten. Ziel war es, den Nutzen eines thermoplastischen Büstenhalters hinsichtlich der Reduktion von Lungen- und Herzdosen zu ermitteln.

Methoden

Prospektiv wurde bei 29 Patientinnen mit linksseitigem und 16 mit rechtsseitigem Brustkrebs, bei denen die zwischen 2012 und 2013 eine brusterhaltende OP und Ganzbrustbestrahlung („whole breast irradiation“, WBI) erfolgte, die Effektivität eines thermoplastischen Büstenhalters (BH) untersucht. Die WBI wurde 3‑D-geplant über tangentiale Gegenfelder mit bis zu 50,4 Gy durchgeführt. Die Bestrahlungsplanung erfolgte jeweils mit und ohne BH. Verschiedene dosimetrische Parameter, bezogen auf die Herz- und ipsilaterale Lungendosis, wurden analysiert. Neben dem Gesamtherz wurden Subvolumina wie der R. interventricularis anterior (RIVA) und eine definierte apikale Region, das „apical myocardial territory“ (AMT), definiert.

Ergebnisse

Die ipsilaterale Lungendosis wurde durchschnittlich um 30,6 % (Karzinom linksseitig) bzw. 29,5 % (rechtsseitig) gesenkt (p < 0,001). Die V20Gy der linken Lunge wurde um 39,5 % (4,9 vs. 8,1 % des Volumens, p < 0,001) reduziert. Die mittlere und maximale Herzdosis wurden durch Verwendung des BH signifikant gesenkt (1,6 vs. 2,1 Gy bzw. 30,7 vs. 39,3 Gy; p = 0,01 bzw. p < 0,001), ebenso die mittlere und maximale AMT-Dosis (2,5 vs. 4,4 Gy bzw. 31,0 vs. 47,2 Gy; p < 0,01 bzw. p < 0,001). Die mittlere und maximale RIVA-Dosis wurde durch den BH gesenkt, jedoch nicht signifikant. Es traten keine akuten Hauttoxizitäten > Grad 2 auf.

Schlussfolgerung

Der thermoplastische BH ermöglicht die signifikante Reduzierung der Strahlenbelastung am Herzen, insbesondere im Herzspitzenbereich sowie der ipsilateralen Lunge, ohne die Hauttoxizität zu erhöhen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Clark RM, Whelan T, Levine M, Roberts R, Willan A, McCulloch P et al (1996) Randomized clinical trial of breast irradiation following lumpectomy and axillary dissection for node-negative breast cancer: an update. Ontario Clinical Oncology Group. J Natl Cancer Inst 88(22):1659–1664

    Article  CAS  PubMed  Google Scholar 

  2. Fisher B, Anderson S, Redmond CK, Wolmark N, Wickerham DL, Cronin WM (1995) Reanalysis and results after 12 years of follow-up in a randomized clinical trial comparing total mastectomy with lumpectomy with or without irradiation in the treatment of breast cancer. N Engl J Med 333(22):1456–1461

    Article  CAS  PubMed  Google Scholar 

  3. Cuzick J, Stewart H, Rutqvist L, Houghton J, Edwards R, Redmond C et al (1994) Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol 12(3):447–453

    CAS  PubMed  Google Scholar 

  4. Darby S, McGale P, Peto R, Granath F, Hall P, Ekbom A (2003) Mortality from cardiovascular disease more than 10 years after radiotherapy for breast cancer: nationwide cohort study of 90 000 Swedish women. BMJ 326(7383):256–257

    Article  PubMed  PubMed Central  Google Scholar 

  5. Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans E et al (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366(9503):2087–2106

    Article  CAS  PubMed  Google Scholar 

  6. Roychoudhuri R, Robinson D, Putcha V, Cuzick J, Darby S, Moller H (2007) Increased cardiovascular mortality more than fifteen years after radiotherapy for breast cancer: a population-based study. BMC Cancer 7:9

    Article  PubMed  PubMed Central  Google Scholar 

  7. Darby SC, McGale P, Taylor CW, Peto R (2005) Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol 6(8):557–565

    Article  PubMed  Google Scholar 

  8. Giordano SH, Kuo YF, Freeman JL, Buchholz TA, Hortobagyi GN, Goodwin JS (2005) Risk of cardiac death after adjuvant radiotherapy for breast cancer. J Natl Cancer Inst 97(6):419–424

    Article  PubMed  PubMed Central  Google Scholar 

  9. Harris EE, Correa C, Hwang WT, Liao J, Litt HI, Ferrari VA et al (2006) Late cardiac mortality and morbidity in early-stage breast cancer patients after breast-conservation treatment. J Clin Oncol 24(25):4100–4106

    Article  PubMed  Google Scholar 

  10. Nixon AJ, Manola J, Gelman R, Bornstein B, Abner A, Hetelekidis S et al (1998) No long-term increase in cardiac-related mortality after breast-conserving surgery and radiation therapy using modern techniques. J Clin Oncol 16(4):1374–1379

    CAS  PubMed  Google Scholar 

  11. Taylor CW, Nisbet A, McGale P, Darby SC (2007) Cardiac exposures in breast cancer radiotherapy: 1950s–1990s. Int J Radiat Oncol Biol Phys 69(5):1484–1495

    Article  PubMed  Google Scholar 

  12. Beck RE, Kim L, Yue NJ, Haffty BG, Khan AJ, Goyal S (2014) Treatment techniques to reduce cardiac irradiation for breast cancer patients treated with breast-conserving surgery and radiation therapy: a review. Front Oncol 4:327

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nilsson G, Holmberg L, Garmo H, Duvernoy O, Sjogren I, Lagerqvist B et al (2012) Distribution of coronary artery stenosis after radiation for breast cancer. J Clin Oncol 30(4):380–386

    Article  PubMed  Google Scholar 

  14. Tan W, Liu D, Xue C, Xu J, Li B, Chen Z et al (2012) Anterior myocardial territory may replace the heart as organ at risk in intensity-modulated radiotherapy for left-sided breast cancer. Int J Radiat Oncol Biol Phys 82(5):1689–1697

    Article  PubMed  Google Scholar 

  15. Tan W, Wang X, Qiu D, Liu D, Jia S, Zeng F et al (2011) Dosimetric comparison of intensity-modulated radiotherapy plans, with or without anterior myocardial territory and left ventricle as organs at risk, in early-stage left-sided breast cancer patients. Int J Radiat Oncol Biol Phys 81(5):1544–1551

    Article  PubMed  Google Scholar 

  16. Vikstrom J, Hjelstuen MH, Mjaaland I, Dybvik KI (2011) Cardiac and pulmonary dose reduction for tangentially irradiated breast cancer, utilizing deep inspiration breath-hold with audio-visual guidance, without compromising target coverage. Acta Oncol 50(1):42–50

    Article  PubMed  Google Scholar 

  17. Taylor CW, Povall JM, McGale P, Nisbet A, Dodwell D, Smith JT et al (2008) Cardiac dose from tangential breast cancer radiotherapy in the year 2006. Int J Radiat Oncol Biol Phys 72(2):501–507

    Article  PubMed  Google Scholar 

  18. Early Breast Cancer Trialists’ Collaborative Group, Darby S, McGale P, Correa C, Taylor C, Arriagada R et al (2011) Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 378(9804):1707–1716

    Article  Google Scholar 

  19. Hooning MJ, Botma A, Aleman BM, Baaijens MH, Bartelink H, Klijn JG et al (2007) Long-term risk of cardiovascular disease in 10-year survivors of breast cancer. J Natl Cancer Inst 99(5):365–375

    Article  PubMed  Google Scholar 

  20. Taylor CW, Nisbet A, McGale P, Goldman U, Darby SC, Hall P et al (2009) Cardiac doses from Swedish breast cancer radiotherapy since the 1950s. Radiother Oncol 90(1):127–135

    Article  PubMed  Google Scholar 

  21. Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Bronnum D et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368(11):987–998

    Article  CAS  PubMed  Google Scholar 

  22. Stewart FA, Seemann I, Hoving S, Russell NS (2013) Understanding radiation-induced cardiovascular damage and strategies for intervention. Clin Oncol 25(10):617–624

    Article  CAS  Google Scholar 

  23. Aznar MC, Korreman SS, Pedersen AN, Persson GF, Josipovic M, Specht L (2011) Evaluation of dose to cardiac structures during breast irradiation. Br J Radiol 84(1004):743–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Andratschke N, Maurer J, Molls M, Trott KR (2011) Late radiation-induced heart disease after radiotherapy. Clinical importance, radiobiological mechanisms and strategies of prevention. Radiother Oncol 100(2):160–166

    Article  PubMed  Google Scholar 

  25. Marks LB, Yu X, Prosnitz RG, Zhou SM, Hardenbergh PH, Blazing M et al (2005) The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys 63(1):214–223

    Article  PubMed  Google Scholar 

  26. Magee B, Coyle C, Kirby MC, Kane B, Williams PC (1997) Use of electronic portal imaging to assess cardiac irradiation in breast radiotherapy. Clin Oncol 9(4):259–261

    Article  CAS  Google Scholar 

  27. Hepp R, Ammerpohl M, Morgenstern C, Nielinger L, Erichsen P, Abdallah A et al (2015) Deep inspiration breath-hold (DIBH) radiotherapy in left-sided breast cancer : Dosimetrical comparison and clinical feasibility in 20 patients. Strahlentherapie Onkol 191(9):710–716

    Article  Google Scholar 

  28. Lee HY, Chang JS, Lee IJ, Park K, Kim YB, Suh CO et al (2013) The deep inspiration breath hold technique using Abches reduces cardiac dose in patients undergoing left-sided breast irradiation. Radiat Oncol J 31(4):239–246

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stranzl H, Zurl B (2008) Postoperative irradiation of left-sided breast cancer patients and cardiac toxicity. Does deep inspiration breath-hold (DIBH) technique protect the heart? Strahlenther Onkol 184(7):354–358

    Article  PubMed  Google Scholar 

  30. Kirby AM, Evans PM, Donovan EM, Convery HM, Haviland JS, Yarnold JR (2010) Prone versus supine positioning for whole and partial-breast radiotherapy: a comparison of non-target tissue dosimetry. Radiother Oncol 96(2):178–184

    Article  PubMed  Google Scholar 

  31. Frenzel T, Krull A (2015) The use of IMRT in Germany. Strahlenther Onkol 191(11):821–826

    Article  PubMed  Google Scholar 

  32. Lohr F, El-Haddad M, Dobler B, Grau R, Wertz HJ, Kraus-Tiefenbacher U et al (2009) Potential effect of robust and simple IMRT approach for left-sided breast cancer on cardiac mortality. Int J Radiat Oncol Biol Phys 74(1):73–80

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc D. Piroth M.D..

Ethics declarations

Conflict of interest

M.D. Piroth, D. Petz, M. Pinkawa, R. Holy, and M.J. Eble state that there are no conflicts of interest.

Ethical standards

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piroth, M.D., Petz, D., Pinkawa, M. et al. Usefulness of a thermoplastic breast bra for breast cancer radiotherapy. Strahlenther Onkol 192, 609–616 (2016). https://doi.org/10.1007/s00066-016-0981-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-016-0981-0

Keywords

Schlüsselwörter

Navigation