Skip to main content
Log in

Inclined head position improves dose distribution during hippocampal-sparing whole brain radiotherapy using VMAT

Schräge Kopfposition bessert die Dosisverteilung bei der hippokampusschonenden Ganzhirnbestrahlung mit VMAT

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

Hippocampal-sparing whole brain radiotherapy (HS-WBRT) aims to preserve neurocognitive functions in patients undergoing brain radiotherapy (RT). Volumetric modulated arc therapy (VMAT) involves intensity-modulated RT using a coplanar arc. An inclined head position might improve dose distribution during HS-WBRT using VMAT.

Materials and methods

This study analyzed 8 patients receiving brain RT with inclined head positioning. A comparable set of CT images simulating a non-inclined head position was obtained by rotating the original CT set. HS-WBRT plans of coplanar VMAT for each CT set were generated with a prescribed dose of 30 Gy in 10 fractions. Maximum dose to the hippocampi was limited to 16 Gy; to the optic nerve, optic chiasm, and eyeballs this was confined to less than 37.5 Gy; for the lenses to 8 Gy. Dosimetric parameters of the two different plans of 8 patients were compared with paired t-test.

Results

Mean inclined head angle was 11.09 ± 0.73°. The homogeneity (HI) and conformity (CI) indexes demonstrated improved results, with an average 8.4 ± 10.0 % (p = 0.041) and 5.3 ± 3.9 % (p = 0.005) reduction, respectively, in the inclined vs. non-inclined position. The inclined head position had lower hippocampi Dmin (10.45 ± 0.36 Gy), Dmax (13.70 ± 0.25 Gy), and Dmean (12.01 ± 0.38 Gy) values vs. the non-inclined head position (Dmin = 12.07 ± 1.07 Gy; Dmax = 15.70 ± 1.25 Gy; Dmean = 13.91 ± 1.01 Gy), with 12.8 ± 8.9 % (p = 0.007), 12.2 ± 6.8 % (p = 0.003), and 13.2 ± 7.2 % (p = 0.002) reductions, respectively. Mean Dmax for the lenses was 6.34 ± 0.72 Gy and 7.60 ± 0.46 Gy, respectively, with a 16.3 ± 10.8 % reduction in the inclined position (p = 0.004). Dmax for the optic nerve and Dmean for the eyeballs also decreased by 7.0 ± 5.9 % (p = 0.015) and 8.4 ± 7.2 % (p = 0.015), respectively.

Conclusion

Inclining the head position to approximately 11° during HS-WBRT using VMAT improved dose distribution in the planning target volume and allowed lower doses to the hippocampi and optic apparatus.

Zusammenfassung

Zielsetzung

Die hippokampusschonende Ganzhirnbestrahlung (HS-WBRT) schützt die neurokognitiven Funktionen der Patienten. Die volumenmodulierte Arc-Therapie (VMAT) ist eine intensitätsmodulierte Strahlentherapie (IMRT) mit koplanarer Achse. Eine schräge Kopfhaltung könnte die Dosisverteilung während der HS-WBRT mit VMAT verbessern.

Material und Methode

Untersucht wurden 8 Patienten mit einer WBRT in geneigter Kopfhaltung. Durch Rotation der Original-CT-Datensätze wurden vergleichbare CT-Datensätze mit nicht geneigtem Kopf simulierten. Die HS-WBRT-Pläne mit koplanarer VMAT enthielten für jeden CT-Datensatz eine vorgeschriebene Dosis von 30 Gy in 10 Fraktionen. Die maximale Dosierung des Hippokampus war auf 17 Gy, für Sehnerv, Sehnervenkreuzung und Augapfel war die Dosierung auf 37,5 Gy und für Linsen auf 8 Gy begrenzt. Dosimetrische Parameter der beiden unterschiedlichen Planungen der 5 Patienten wurden mit dem gepaarten t-Test verglichen.

Ergebnisse

Der Mittelwert des Neigungswinkels betrug 11,09 ± 0,73°. Bei geneigtem Kopf sanken der Homogenitäts- und Konformitätsindex um durchschnittlich je 8,4 ± 10,0 % (p = 0,041) bzw. 5,3 ± 3,9 % (p = 0,005). Im Hippokampus ergab ein geneigter Kopf niedrigere Werte von Dmin (10,45 ± 0,36 Gy), Dmax (13,7 ± 0,25 Gy) und Dmean (12,01 ± 0,38 Gy) als ein nichtgeneigter Kopf (Dmin 12,07 ± 1,07 Gy; Dmax 15,70 ± 1,25 Gy; Dmean 13,91 ± 1,01 Gy) mit einer Reduktion von jeweils 12,8 ± 8,9 % (p = 0,007), 12,2 ± 6,8 % (p = 0,003) und 13,2 ± 7,2 % (p = 0,002). Die Dmax der Linsen betrug bei Behandlungen mit geneigtem Kopf 6,34 ± 0,72 Gy und 7,60 ± 0,46 (Rückgang um 16,3 ± 10,8 %; p = 0,004). Dmax für Sehnerven und Dmean für Augäpfel sanken ebenfalls um 7,0 ± 5,9 % (p = 0,015) bzw. 8,4 ± 7,2 % (p = 0,015).

Schlussfolgerung

Die HS-WBRT mit VMAT mit ca. 11° geneigtem Kopf führt im Vergleich zum gerade positionierten Kopf zu einer besseren PTV-Dosisverteilung und reduziert die Dosisbelastung in Hippokampus und optischen Sehorganen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gondi V, Tome WA, Mehta MP (2010) Why avoid the hippocampus? A comprehensive review. Radiother Oncol 97:370–376

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kazda T, Jancalek R, Pospisil P et al (2014) Why and how to spare the hippocampus during brain radiotherapy: The developing role of hippocampal avoidance in cranial radiotherapy. Radiat Oncol 9:139

    Article  PubMed  PubMed Central  Google Scholar 

  3. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302:1760–1765

    Article  CAS  PubMed  Google Scholar 

  4. Gondi V, Pugh SL, Tome WA et al (2014) Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (rtog 0933): A phase ii multi-institutional trial. J Clin Oncol 32:3810–3816

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gondi V, Tolakanahalli R, Mehta MP et al (2010) Hippocampal-sparing whole-brain radiotherapy: A “how-to” technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 78:1244–1252

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marsh JC, Godbole RH, Herskovic AM et al (2010) Sparing of the neural stem cell compartment during whole-brain radiation therapy: A dosimetric study using helical tomotherapy. Int J Radiat Oncol Biol Phys 78:946–954

    Article  PubMed  Google Scholar 

  7. Hsu F, Carolan H, Nichol A et al (2010) Whole brain radiotherapy with hippocampal avoidance and simultaneous integrated boost for 1–3 brain metastases: A feasibility study using volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys 76:1480–1485

    Article  PubMed  Google Scholar 

  8. Oehlke O, Wucherpfennig D, Fels F et al (2015) Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases: Local tumour control and survival. Strahlenther Onkol 191:461–469

    Article  PubMed  Google Scholar 

  9. Awad R, Fogarty G, Hong A et al (2013) Hippocampal avoidance with volumetric modulated arc therapy in melanoma brain metastases – the first australian experience. Radiat Oncol 8:62

    Article  PubMed  PubMed Central  Google Scholar 

  10. Siglin J, Champ CE, Vakhnenko Y et al (2014) Optimizing patient positioning for intensity modulated radiation therapy in hippocampal-sparing whole brain radiation therapy. Pract Radiat Oncol 4:378–383

    Article  PubMed  Google Scholar 

  11. Gondi V, Tome WA, Rowley HA, Mehta MP Hippocampal contouring: A contouring atlas for rtog 0933. https://www.rtog.org/CoreLab/ContouringAtlases/HippocampalSparing.aspx. Last assessed: 09/01/2015

  12. Lee J, Kim JI, Ye SJ et al (2015) Dosimetric effects of roll rotational setup errors on lung stereotactic ablative radiotherapy using volumetric modulated arc therapy. Br J Radiol 88:20140862

    Article  PubMed  Google Scholar 

  13. https://www.ocf.berkeley.edu/~fricke/projects/israel/paeth/rotation_by_shearing.html. Accessed 3/2/2016

  14. The international commission on radiation units and measurements (2010). J ICRU 10 (1):NP. doi:10.1093/jicru/ndq001

  15. Feuvret L, Noel G, Mazeron JJ et al (2006) Conformity index: A review. Int J Radiat Oncol Biol Phys 64:333–342

    Article  PubMed  Google Scholar 

  16. Shaw E, Scott C, Souhami L et al (2000) Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: Final report of rtog protocol 90-05. Int J Radiat Oncol Biol Phys 47:291–298

    Article  CAS  PubMed  Google Scholar 

  17. Naiyanet N, Oonsiri S, Lertbutsayanukul C et al (2007) Measurements of patient’s setup variation in intensity-modulated radiation therapy of head and neck cancer using electronic portal imaging device. Biomed Imaging Interv J 3:e30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prokic V, Wiedenmann N, Fels F et al (2013) Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases: A planning study on treatment concepts. Int J Radiat Oncol Biol Phys 85:264–270

    Article  PubMed  Google Scholar 

  19. Shen J, Bender E, Yaparpalvi R et al (2015) An efficient volumetric arc therapy treatment planning approach for hippocampal-avoidance whole-brain radiation therapy (ha-wbrt). Med Dosim 40:205–209

    Article  PubMed  Google Scholar 

  20. Giaj Levra N, Sicignano G, Fiorentino A et al (2015) Whole brain radiotherapy with hippocampal avoidance and simultaneous integrated boost for brain metastases: A dosimetric volumetric-modulated arc therapy study. Radiol Med : doi:10.1007/s11547-015-0563-8

    PubMed  Google Scholar 

  21. Lee K, Lenards N, Holson J (2015) Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study. Med Dosim : doi:10.1016/j.meddos.2015.06.003

    Google Scholar 

  22. Kataria T, Sharma K, Subramani V et al (2012) Homogeneity index: An objective tool for assessment of conformal radiation treatments. J Med Phys 37:207–213

    Article  PubMed  PubMed Central  Google Scholar 

  23. Marsh JC, Godbole R, Diaz AZ et al (2011) Sparing of the hippocampus, limbic circuit and neural stem cell compartment during partial brain radiotherapy for glioma: A dosimetric feasibility study. J Med Imaging Radiat Oncol 55:442–449

    Article  PubMed  Google Scholar 

  24. Marsh J, Godbole R, Diaz A et al (2012) Feasibility of cognitive sparing approaches in children with intracranial tumors requiring partial brain radiotherapy: A dosimetric study using tomotherapy. J Cancer Ther Res 1:1

    Article  Google Scholar 

  25. Marsh JC, Ziel GE, Diaz AZ et al (2013) Integral dose delivered to normal brain with conventional intensity-modulated radiotherapy (imrt) and helical tomotherapy imrt during partial brain radiotherapy for high-grade gliomas with and without selective sparing of the hippocampus, limbic circuit and neural stem cell compartment. J Med Imaging Radiat Oncol 57:378–383

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant (#0820010) for Cancer Control Program from Korean Ministry of Health & Welfare to In Ah Kim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Ah Kim MD, PhD.

Ethics declarations

Conflict of interest

K.S. Kim, S.-J. Seo, J. Lee, J.-Y. Seok, J.W. Hong, J.-B. Chung, E. Kim, N. Choi, K.-Y. Eom, J.-S. Kim and I.A. Kim state that there are no conflicts of interest.

Ethical standards

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.S., Seo, SJ., Lee, J. et al. Inclined head position improves dose distribution during hippocampal-sparing whole brain radiotherapy using VMAT. Strahlenther Onkol 192, 473–480 (2016). https://doi.org/10.1007/s00066-016-0973-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-016-0973-0

Keywords

Schlüsselwörter

Navigation