Skip to main content

Advertisement

Log in

Targeting of EGFR and HER2 with therapeutic antibodies and siRNA

A comparative study in glioblastoma cells

Inhibierung von EGFR und HER2 mit therapeutischen Antikörpern und siRNA

Eine vergleichende Studie in Glioblastomzellen

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

The epidermal growth factor receptors, EGFR (HER1) and HER2, have proven prognostic relevance in a variety of human malignancies and both are functionally involved in the molecular pathogenesis of malignant gliomas.

Material and methods

We selectively inhibited EGFR and HER2 in glioblastoma cell lines via EGFR- and HER2-specific siRNAs and through the binding of the therapeutic antibodies cetuximab and trastuzumab. The expression of EGFR and HER2 was verified by real-time PCR and western blot analyses. We examined the growth rate, cell cycle distribution, cell migration, clonogenic survival, and radiosensitivity of U251MG and LN-229 glioblastoma cell lines to determine the physiological and cell biological effects of EGFR and HER2 targeting.

Results

EGFR and HER2 targeting using the therapeutic antibodies cetuximab and trastuzumab had no effect on cellular growth rate, cell cycle distribution, cell migration, clonogenic survival, and radiosensitivity in the cell lines U251 and LN-229. In contrast, siRNA knock-down of EGFR and HER2, reduced the growth rate by 40–65 %. The knock-down of EGFR did not change the cell migration rate in the cell lines U251 and LN-229. However, knock-down of HER2 reduced the cell migration rate by 50 %. Radiobiological analysis revealed that EGFR knock-down induced no radiosensitization in U251MG and LN-229 cells. However, the knock-down of HER2 induced radiosensitization in U251MG cells.

Conclusion

The epidermal growth factor receptor HER2 is a promising anti-tumor target for the therapy of glioblastoma. HER2 targeting may represent a promising strategy to induce cell physiological and radiobiological anti-tumor effects in glioblastoma.

Zusammenfassung

Hintergrund

Die epidermalen Wachstumsfaktorrezeptoren EGFR (HER1) und HER2 haben in verschiedenen humanen Malignitäten eine prognostische Bedeutung und sind funktionell in die molekulare Pathogenese von malignen Gliomen involviert.

Material und Methoden

Wir inhibierten EGFR und HER2 in Glioblastomzelllinien selektiv durch EGFR- und HER2-spezifische siRNAs bzw. durch die Inkubation mit den therapeutischen Antikörpern Cetuximab und Trastuzumab. Die Expression von EGFR und HER2 wurde mittels Real-Time-PCR und Western-Blot-Analysen verifiziert. Um die physiologischen und zellbiologischen Effekte der EGFR- und HER2-Inhibierung zu untersuchen, wurden Zellwachstum, Verteilung der Zellen auf die Zellzyklusphasen, Zellmigration, klonogenes Zellüberleben und Radiosensitivität bestimmt.

Ergebnisse

Die EGFR- und HER2-Inhibierung mit Hilfe der therapeutischen Antikörper Cetuximab und Trastuzumab hatte keinen Effekt auf das Wachstum, die Verteilung der Zellen auf die Zellzyklusphasen, die Zellmigration, das klonogene Zellüberleben und die Radiosensitivität. Im Gegensatz dazu reduzierte der „Knock-down“ von EGFR und HER2 durch die siRNA die Wachstumsrate um 40–65 %. Der „Knock-down“ von EGFR hatte keinen Einfluss auf die Zellmigration der Zelllinien U251MG und LN-229. Der „Knock-down“ von HER2 dagegen reduzierte die Zellmigration um 50 %. In radiobiologischen Untersuchungen zeigte sich keine Radiosensibilisierung in den Zelllinien U251MG und LN-229 nach „Knock-down“ von EGFR. Im Gegensatz dazu induzierte der „Knock-down“ von HER2 eine Radiosensibilisierung in U251MG-Zellen.

Schlussfolgerung

Der epidermale Wachstumsfaktorrezeptor HER2 ist ein vielversprechendes Ziel für eine antitumorale targetorientierte Therapie von Glioblastomen. Die Inhibierung von HER2 scheint dabei eine vielversprechende Strategie zu sein, um zellphysiologische und radiobiologische antitumorale Effekte in Glioblastomen zu induzieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol 109:93–108

    Article  PubMed  Google Scholar 

  2. van den Bent MJ (2006) Adjuvant treatment of high grade gliomas. Ann Oncol 17:X186–X190

    Google Scholar 

  3. Johns TG, Mckay MJ, Cvrljevic AN et al (2010) Mab 806 Enhances the efficacy of Ionizing radiation in glioma xenografts expressing the De2–7 epidermal growth factor receptor. Int J Radiat Oncol Biol Phys 78:572–578

    Article  CAS  PubMed  Google Scholar 

  4. Fedrigo CA, Grivicich I, Schunemann DP et al (2011) Radioresistance of human glioma spheroids and expression of HSP70, p53 and EGFr. Radiat Oncol 6:156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Mukherjee B, McEllin B, Camacho CV et al (2009) EGFRvIII and DNA double-strand break repair: a molecular mechanism for radioresistance in glioblastoma. Cancer Res 69:4252–4259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Citri A, Yarden Y (2006) EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7:505–516

    Article  CAS  PubMed  Google Scholar 

  7. Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Chakravarti A, Dicker A, Mehta M (2004) The contribution of epidermal growth factor receptor (EGFR) signaling pathway to radioresistance in human gliomas: a review of preclinical and correlative clinical data. Int J Radiat Oncol Biol Phys 58:927–931

    Article  CAS  PubMed  Google Scholar 

  9. Yarden Y (2001) The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. Eur J Cancer 37:S3–S8

    Article  CAS  PubMed  Google Scholar 

  10. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137

    Article  CAS  PubMed  Google Scholar 

  11. Mineo JF, Bordron A, Quintion-Roue I et al (2006) Increasing of HER2 membranar density in human glioblastoma U251MG cell line established in a new nude mice model. J Neurooncol 76:249–255

    Article  PubMed  Google Scholar 

  12. Mineo JF, Bordron A, Baroncini M et al (2007) Low HER2-expressing glioblastomas are more often secondary to anaplastic transformation of low-grade glioma. J Neurooncol 85:281–287

    Article  PubMed  Google Scholar 

  13. Moasser MM (2007) The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26:6469–6487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Nicholson RI, Gee JMW, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37:S9–S15

  15. Rego RL, Foster NR, Smyrk TC et al (2010) Prognostic effect of activated EGFR expression in human colon carcinomas: comparison with EGFR status. Br J Cancer 102:165–172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Wichmann H, Guttler A, Bache M et al (2014) Inverse prognostic impact of ErbB2 mRNA and protein expression level in tumors of soft tissue sarcoma patients. Strahlenther Onkol

  17. Slamon DJ, Clark GM, Wong SG et al (1987) Human-breast cancer—correlation of relapse and survival with amplification of the Her-2 Neu oncogene. Science 235:177–182

    Article  CAS  PubMed  Google Scholar 

  18. Andrulis IL, Bull SB, Blackstein ME et al (1998) Neu/erbB-2 amplification identifies a poor-prognosis group of women with node-negative breast cancer. J Clin Oncol 16:1340–1349

    CAS  PubMed  Google Scholar 

  19. Shen KR, Zhang SD, Zhao L et al (2014) Role of EGFR as a prognostic factor for survival in head and neck cancer: a meta-analysis. Tumor Biol 35:2285–2295

    Article  Google Scholar 

  20. Sartore-Bianchi A, Moroni M, Veronese S et al (2007) Epidermal growth factor receptor gene copy number and clinical outcome of metastatic colorectal cancer treated with panitumumab. J Clin Oncol 25:3238–3245

    Article  CAS  PubMed  Google Scholar 

  21. Bergonie J, Tribondeau L (1959) Interpretation of some results of radiotherapy and an attempt at determining a logical technique of treatment [De Quelques Resultats de la Radiotherapie et Essai de Fixation d’une Technique Rationnelle]. Radiat Res 11:587–588

    Article  CAS  PubMed  Google Scholar 

  22. Heinemann V, Stintzing S, Kirchner T et al (2009) Clinical relevance of EGFR- and KRAS-status in colorectal cancer patients treated with monoclonal antibodies directed against the EGFR. Cancer Treat Rev 35:262–271

    Article  CAS  PubMed  Google Scholar 

  23. Mohan S, Heitzer E, Ulz P et al (2014) Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing. PLoS Genet 10:e1004271

    Article  PubMed Central  PubMed  Google Scholar 

  24. Blick SKA, Scott LJ (2007) Cetuximab—a review of its use in squamous cell carcinoma of the head and neck and metastatic colorectal cancer. Drugs 67:2585–2607

    Article  CAS  PubMed  Google Scholar 

  25. Kulkarni S, Hicks DG (2008) HER2-Positive early breast cancer and trastuzumab: A surgeon’s perspective. Ann Surg Oncol 15:1677–1688

    Article  PubMed  Google Scholar 

  26. Hahnel A, Wichmann H, Kappler M et al (2010) Effects of osteopontin inhibition on radiosensitivity of MDA-MB-231 breast cancer cells. Radiat Oncol 5:82

    Article  PubMed Central  PubMed  Google Scholar 

  27. Bonner JA, Harari PM, Giralt J et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. New England J Med 354:567–578

    Article  CAS  Google Scholar 

  28. Slamon D (2000) Herceptin: increasing survival in metastatic breast cancer. Eur J Oncol Nurs 4:24–29

    Article  CAS  PubMed  Google Scholar 

  29. Hudis CA (2007) Drug therapy: Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med 357:39–51

    Article  CAS  PubMed  Google Scholar 

  30. Schulte A, Liffers K, Kathagen A et al (2013) Erlotinib resistance in EGFR-amplified glioblastoma cells is associated with upregulation of EGFRvIII and PI3Kp110δ. Neuro-Oncol 15:1289–1301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Upez-Albaitero A, Ferris RL (2007) Immune activation by epidermal growth factor receptor-specific monoclonal antibody therapy for head and neck cancer. Arch Otolaryngol Head Neck Surg 133:1277–1281

    Article  Google Scholar 

  32. Chen G, Kronenberger P, Teugels E et al (2012) Targeting the epidermal growth factor receptor in non-small cell lung cancer cells: the effect of combining RNA interference with tyrosine kinase inhibitors or cetuximab. Bmc Med 10:28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Combs SE, Schulz-Ertner D, Roth W et al (2007) In vitro responsiveness of glioma cell lines to multimodality treatment with radiotherapy, temozolomide, and epidermal growth factor receptor inhibition with cetuximab. Int J Radiat Oncol Biol Phys 68:873–882

    Article  CAS  PubMed  Google Scholar 

  34. Miqueli AD, Rolff J, Lemm M et al (2009) Radiosensitisation of U87MG brain tumours by anti-epidermal growth factor receptor monoclonal antibodies. Br J Cancer 100:950–958

    Article  Google Scholar 

  35. Dittmann K, Mayer C, Fehrenbacher B et al (2005) Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem 280:31182–31189

    Article  CAS  PubMed  Google Scholar 

  36. Baumann M, Zips D, Krause M (2012) [Experimental tumor therapy]. Strahlenther Onkol 188:291–294

    Article  PubMed  Google Scholar 

  37. Le XF, Almeida MI, Mao WQ et al (2012) Modulation of MicroRNA-194 and cell migration by HER2-Targeting trastuzumab in breast cancer. Plos One 7:e41170

  38. Yakes FM, Chinratanalab W, Ritter CA et al (2002) Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 62:4132–4141

    CAS  PubMed  Google Scholar 

  39. Longva KE, Pedersen NM, Haslekas C et al (2005) Herceptin-induced inhibition of ErbB2 signaling involves reduced phosphorylation of Akt but not endocytic down-regulation of ErbB2. Int J Cancer 116:359–367

    Article  CAS  PubMed  Google Scholar 

  40. Barok M, Isola J, Palyi-Krekk Z et al (2007) Trastuzumab causes antibody-dependent cellular cytotoxicity-mediated growth inhibition of submacroscopic JIMT-1 breast cancer xenografts despite intrinsic drug resistance. Mol Cancer Ther 6:2065–2072

    Article  CAS  PubMed  Google Scholar 

  41. Jaime-Ramirez AC, Mundy-Bosse BL, Kondadasula S et al (2011) IL-12 enhances the antitumor actions of trastuzumab via NK Cell IFN-gamma production. J Immunol 186:3401–3409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Roda JM, Joshi T, Butchar JP et al (2007) The activation of natural killer cell effector functions by cetuximab-coated, epidermal growth factor receptor-positive tumor cells is enhanced by cytokines. Clin Cancer Res 13:6419–6428

    Article  CAS  PubMed  Google Scholar 

  43. Garrett JT, Olivares MG, Rinehart C et al (2011) Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. Proc Natl Acad Sci U S A 108:5021–5026

  44. Wolf-Yadlin A, Kumar N, Zhang Y et al (2006) Effects of HER2 overexpression on cell signaling networks governing proliferation and migration. Mol Syst Biol 2:54

  45. Faltus T, Yuan JP, Zimmer B et al (2004) Silencing of the HER2/neu gene by siRNA inhibits proliferation and induces apoptosis in HER2/neu-overexpressing breast cancer cells. Neoplasia 6:786–795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Choudhury A, Charo J, Parapuram SK et al (2004) Small interfering RNA (siRNA) inhibits the expression of the Her2/neu gene, upregulates HLA class I and induces apoptosis of Her2/neu positive tumor cell lines. Int J Cancer 108:71–77

    Article  CAS  PubMed  Google Scholar 

  47. Vollmann A, Vornlocher HP, Stempfl T et al (2006) Effective silencing of EGFR with RNAi demonstrates non-EGFR dependent proliferation of glioma cells. Int J Oncol 28:1531–1542

    CAS  PubMed  Google Scholar 

  48. Lo HW, Hung MC (2006) Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br J Cancer 94:184–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kang CS, Zhang ZY, Jia ZF et al (2006) Suppression of EGFR expression by antisense or small interference RNA inhibits U251 glioma cell growth in vitro and in vivo. Cancer Gene Ther 13:530–538

    Article  CAS  PubMed  Google Scholar 

  50. Neve RM, Sutterluty H, Pullen N et al (2000) Effects of oncogenic ErbB2 on G1 cell cycle regulators in breast tumour cells. Oncogene 19:1647–1656

    Article  CAS  PubMed  Google Scholar 

  51. Kumar N, Zaman MH, Kim HD et al (2006) A high-throughput migration assay reveals HER2-mediated cell migration arising from increased directional persistence. Biophys J 91:L32–L34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Toulany M, Rodemann HP (2010) Membrane receptor signaling and control of DNA repair after exposure to ionizing radiation. Nuklearmedizin 49:S26–S30

  53. Lammering G, Valerie K, Lin PS et al (2001) Radiosensitization of malignant glioma cells through overexpression of dominant-negative epidermal growth factor receptor. Clin Cancer Res 7:682–690

    CAS  PubMed  Google Scholar 

  54. Gao L, Li FS, Dong B et al (2010) Inhibition of Stat3 and Erbb2 suppresses tumor growth, enhances radiosensitivity, and Induces mitochondria-dependent apoptosis in glioma cells. Int J Radiat Oncol Biol Phys 77:1223–1231

    Article  CAS  PubMed  Google Scholar 

  55. Hasselbalch B, Lassen U, Poulsen HS et al (2010) Cetuximab insufficiently inhibits glioma cell growth due to persistent EGFR downstream signaling. Cancer Invest 28:775–787

    Article  CAS  PubMed  Google Scholar 

  56. Yang CF, Liu Y, Lemmon MA et al (2006) Essential role for Rac in heregulin beta 1 mitogenic signaling: a mechanism that involves epidermal growth factor receptor and is independent of ErbB4. Mol Cell Biol 26:831–842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Ulu N, Henning RH, Guner S et al (2013) Intracellular transactivation of epidermal growth factor receptor by alpha(1A)-Adrenoceptor is mediated by phosphatidylinositol 3-Kinase Independently of activation of extracellular signal regulated kinases 1/2 and Serine-Threonine kinases in Chinese hamster ovary cells. J Pharmacol Exp Ther 347:47–56

    Article  CAS  PubMed  Google Scholar 

  58. Brodowicz T, Wiltschke C, Budinsky AC et al (1997) Soluble HER-2/neu neutralizes biologic effects of anti-HER-2/neu antibody on breast cancer cells in vitro. Int J Cancer 73:875–879

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interests

H. Wichmann, A. Güttler, M. Bache, H. Taubert, S. Rot, J. Kessler, A.W. Eckert, M. Kappler, and D. Vordermark state that there are no conflicts of interest. The accompanying manuscript does not include studies on humans or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Wichmann.

Additional information

Matthias Kappler and Dirk Vordermark contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wichmann, H., Güttler, A., Bache, M. et al. Targeting of EGFR and HER2 with therapeutic antibodies and siRNA. Strahlenther Onkol 191, 180–191 (2015). https://doi.org/10.1007/s00066-014-0743-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-014-0743-9

Keywords

Schlüsselwörter

Navigation