Skip to main content
Log in

Volumetric evaluation of an alternative bladder point in brachytherapy for locally advanced cervical cancer

Volumetrische Auswertung eines alternativen Harnblasen-Referenzpunkts in der Brachytherapie bei lokal fortgeschrittenem Zervixkarzinom

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

To evaluate an alternative dose point, so-called ALG (for Alain Gerbaulet), for the bladder in comparison to the International Commission on Radiation Units and Measurements (ICRU) point and D2cm3 (minimal dose to maximally exposed 2 cm3) in a large cohort of patients with locally advanced cervical cancer treated with external beam radiotherapy followed by image-guided pulsed dose rate brachytherapy.

Methods and materials

For each patient, the ALG point was constructed 1.5 cm above the ICRU bladder, parallel to the tandem (coronal and sagittal planes). The dosimetric data from 162 patients were reviewed.

Results

Average doses to ALG and bladder points were 19.40 Gy ± 7.93 and 17.14 ± 8.70, respectively (p = 0.01). The 2 cm3 bladder dose averaged 24.40 ± 6.77 Gy. Ratios between D2cm3 and dose points were 1.37 ± 0.46 and 1.68 ± 0.74 (p < 0.001) for ALG and ICRU points, respectively. Both dose points appeared correlated with D2cm3 (p < 0.001) with coefficients of determination (R2) of 0.331 and 0.399 respectively. The estimated dose to the ICRU point of the rectum was 12.77 ± 4.21 and 15.76 ± 5.94 for D2cm3 (p < 0.0001). Both values were significantly correlated (p < 0.0001, R2 = 0.485).

Conclusion

The ALG point underestimates the D2cm3, but its mean on a large cohort is closer to D2cm3 than the dose to ICRU point. However, it shows great variability between cases and the weak strength of its correlation to D2cm3 indicates that it is not a good surrogate for individual volumetric evaluation of the dose D2cm3.

Zusammenfassung

Zielsetzung

Auswertung eines Dosiswerts für einen alternativen Harnblasen-Referenzpunkt, genannt ALG (für Alain Gerbaulet), im Vergleich mit dem Referenzpunkt der internationalen Kommission für Messung von Strahleneinheiten (ICRU) und der D2cm3-Dosis (minimale Dosis auf maximal ausgesetzter Fläche 2cm3) anhand einer großen Patientengruppe mit lokal fortgeschrittenem Zervixkarzinom. Das Zervixkarzinom wurde zunächst extern bestrahlt und anschließend mit einer „Pulsed-dose-rate“-(PDR)-Brachytherapie behandelt.

Material und Methode

Für jede Patientin wurde die ALG 1,5 cm oberhalb des Referenzpunkts der ICRU im Bereich der Harnblase festgelegt, parallel zum Tandem (im Koronal- und Sagitalschnitt). Es wurden dosimetrische Daten von insgesamt 162 Patientinnen untersucht.

Ergebnisse

Der Mittelwert der Dosiswerte der ALG und des Referenzpunkts der Harnblase betrugen jeweils 19,40 Gy ± 7,93 und 17,14 ± 8,70 (p = 0,01). Die D2cm3-Dosis der Blase erreichte durchschnittlich 24,40 ± 6,77 Gy. Das Verhältnis zwischen D2cm3 und den Referenzwerten war jeweils 1,37 ± 0,46 für ALG und 1,68 ± 0,74 (p < 0,001) für ICRU. Beide Dosiswerte schienen mit der D2cm3-Dosis zu korrelieren (p < 0,001): der jeweilige Determinierungskoeffizient (R2) betrug 0,331 bzw. 0,339. Die geschätzte Dosis des ICRU-Referenzpunkts vom Rektum betrug 12,77 ± 4,21 und 15,76 ± 5,94 für D2cm3 (p < 0,0001). Beide Werte korrelierten signifikant (p < 0,0001; R2 = 0,485).

Schlussfolgerung

Der ALG-Punkt unterschätzt die D2cm3-Dosis, aber seine Bedeutung für eine große Kohorte ist näher dem D2cm3-Wert als dem des ICRU-Referenzwerts. Dennoch zeigt sich eine große Variabilität zwischen den einzelnen Fällen und die schwache Korrelation zu D2cm3 weist darauf hin, dass diese Methode kein geeigneter Ersatz für eine individuelle Auswertung der D2cm3-Dosis ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Schmid MP, Potter R, Brader P et al (2013) Feasibility of transrectal ultrasonography for assessment of cervical cancer. Strahlenther Onkol 189(2):123–128

    Article  CAS  PubMed  Google Scholar 

  2. Haie-Meder C, Potter R, Van Limbergen E et al (2005) Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol 74(3):235–245

    Article  PubMed  Google Scholar 

  3. Potter R, Haie-Meder C, Van Limbergen E et al (2006) Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol 78(1):67–77

    Article  PubMed  Google Scholar 

  4. Briot A, Crevoisier R de, Petrow P et al (2001) Dose–volume histogram analysis for tumor and critical organs in intracavitary brachytherapy of cervical cancer with the use of MRI. Radiother Oncol 60:pS3

    Article  Google Scholar 

  5. Mazeron R, Gilmore J, Dumas I et al (2013) Adaptive 3D image-guided brachytherapy: a strong argument in the debate on systematic radical hysterectomy for locally advanced cervical cancer. Oncologist 18(4):415–422

    Article  PubMed  Google Scholar 

  6. Deshpande DD, Shrivastav SK, Pradhan AS et al (1997) Dosimetry of intracavitary applications in carcinoma of the cervix: rectal dose analysis. Radiother Oncol 42(2):163–166

    Article  CAS  PubMed  Google Scholar 

  7. Orton CG, Wolf-Rosenblum S (1986) Dose dependence of complication rates in cervix cancer radiotherapy. Int J Radiat Oncol Biol Phys 12(1):37–44

    Article  CAS  PubMed  Google Scholar 

  8. Pourquier H, Delard R, Achille E et al (1987) A quantified approach to the analysis and prevention of urinary complications in radiotherapeutic treatment of cancer of the cervix. Int J Radiat Oncol Biol Phys 13(7):1025–1033

    Article  CAS  PubMed  Google Scholar 

  9. Sinistrero G, Sismondi P, Rumore A et al (1993) Analysis of complications of cervix carcinoma treated by radiotherapy using the Franco-Italian glossary. Radiother Oncol 26(3):203–211

    Article  CAS  PubMed  Google Scholar 

  10. Barillot I, Horiot JC, Maingon P et al (1994) Maximum and mean bladder dose defined from ultrasonography. Comparison with the ICRU reference in gynaecological brachytherapy. Radiother Oncol 30(3):231–238

    Article  CAS  PubMed  Google Scholar 

  11. Bergh F van den, Meertens H, Moonen L et al (1998) The use of a transverse CT image for the estimation of the dose given to the rectum in intracavitary brachytherapy for carcinoma of the cervix. Radiother Oncol 47(1):85–90

    Article  PubMed  Google Scholar 

  12. Levitchi M, Charra-Brunaud C, Quetin P et al (2012) Impact of dosimetric and clinical parameters on clinical side effects in cervix cancer patients treated with 3D pulse-dose-rate intracavitary brachytherapy. Radiother Oncol 103(3):314–321

    Article  PubMed  Google Scholar 

  13. Wachter-Gerstner N, Wachter S, Reinstadler E et al (2003) Bladder and rectum dose defined from MRI based treatment planning for cervix cancer brachytherapy: comparison of dose-volume histograms for organ contours and organ wall, comparison with ICRU rectum and bladder reference point. Radiother Oncol 68(3):269–276

    Article  PubMed  Google Scholar 

  14. Inn Tan Y, Ai Choo B, Mun Laa K (2010) 2D to 3D evaluation of organs at risk doses in intracavitary brachtherapy for cervical cancer. J Contemp Brachytherapy 2(1):37–43

    Article  Google Scholar 

  15. Kirisits C, Lang S, Dimopoulos J et al (2006) The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: design, application, treatment planning, and dosimetric results. Int J Radiat Oncol Biol Phys 65(2):624–630

    Article  PubMed  Google Scholar 

  16. Kirisits C, Potter R, Lang S et al (2005) Dose and volume parameters for MRI-based treatment planning in intracavitary brachytherapy for cervical cancer. Int J Radiat Oncol Biol Phys 62(3):901–911

    Article  PubMed  Google Scholar 

  17. Vinod SK, Caldwell K, Lau A et al (2011) A comparison of ICRU point doses and volumetric doses of organs at risk (OARs) in brachytherapy for cervical cancer. J Med Imaging Radiat Oncol 55(3):304–310

    Article  PubMed  Google Scholar 

  18. Yaparpalvi R, Mutyala S, Gorla GR et al (2008) Point vs. volumetric bladder and rectal doses in combined intracavitary-interstitial high-dose-rate brachytherapy: correlation and comparison with published Vienna applicator data. Brachytherapy 7(4):336–342

    Article  PubMed  Google Scholar 

  19. Pelloski CE, Palmer M, Chronowski GM et al (2005) Comparison between CT-based volumetric calculations and ICRU reference-point estimates of radiation doses delivered to bladder and rectum during intracavitary radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys 62(1):131–137

    Article  PubMed  Google Scholar 

  20. Koom WS, Sohn DK, Kim JY et al (2007) Computed tomography-based high-dose-rate intracavitary brachytherapy for uterine cervical cancer: preliminary demonstration of correlation between dose-volume parameters and rectal mucosal changes observed by flexible sigmoidoscopy. Int J Radiat Oncol Biol Phys 68(5):1446–1454

    Article  PubMed  Google Scholar 

  21. Georg P, Kirisits C, Goldner G et al (2009) Correlation of dose-volume parameters, endoscopic and clinical rectal side effects in cervix cancer patients treated with definitive radiotherapy including MRI-based brachytherapy. Radiother Oncol 91(2):173–180

    Article  PubMed  Google Scholar 

  22. Georg P, Boni A, Ghabuous A et al (2013) Time course of late rectal- and urinary bladder side effects after MRI-guided adaptive brachytherapy for cervical cancer. Strahlenther Onkol 189(7):535–540

    Article  CAS  PubMed  Google Scholar 

  23. Georg P, Potter R, Georg D et al (2011) Dose effect relationship for late side effects of the rectum and urinary bladder in magnetic resonance image-guided adaptive cervix cancer brachytherapy. Int J Radiat Oncol Biol Phys 82(2):653–657

    Article  PubMed  Google Scholar 

  24. EMBRACE, an intErnational study on Mri-guided BRachytherapy in locally advanced CErvical cancer. https://www.embracestudy.dk/About.aspx. Accessed 28 October 2013

Download references

Acknowledgments

We thank Laëtitia-Marie Petit (HUG, Geneva) for editing.

Compliance with ethical considerations

Conflict of interest. R. Mazeron, J. Gilmore, J. Champoudry, I. Dumas, J. Helou, P. Maroun, F. Martinetti, A. Gerbaulet, and C. Haie-Meder state that there are no conflicts of interest. The accompanying manuscript does not include studies on humans or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mazeron MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazeron, R., Gilmore, J., Champoudry, J. et al. Volumetric evaluation of an alternative bladder point in brachytherapy for locally advanced cervical cancer. Strahlenther Onkol 190, 41–47 (2014). https://doi.org/10.1007/s00066-013-0463-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-013-0463-6

Keywords

Schlüsselwörter

Navigation