Skip to main content

Advertisement

Log in

Pelvic Ewing sarcomas

Three-dimensional conformal vs. intensity-modulated radiotherapy

Plevine Ewing-Sarkome

Dreidimensionale konformale vs. intensitätsmodulierte Strahlentherapie

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

The goal of the present work was to assess the potential advantage of intensity-modulated radiotherapy (IMRT) over three-dimensional conformal radiotherapy (3D-CRT) planning in pelvic Ewing’s sarcoma.

Patients and methods

A total of 8 patients with Ewing sarcoma of the pelvis undergoing radiotherapy were analyzed. Plans for 3D-CRT and IMRT were calculated for each patient. Dose coverage of the planning target volume (PTV), conformity and homogeneity indices, as well as further parameters were evaluated.

Results

The average dose coverage values for PTV were comparable in 3D-CRT and IMRT plans. Both techniques had a PTV coverage of V95 > 98 % in all patients. Whereas the IMRT plans achieved a higher conformity index compared to the 3D-CRT plans (conformity index 0.79 ± 0.12 vs. 0.54 ± 0.19, p = 0.012), the dose distribution across the target volumes was less homogeneous with IMRT planning than with 3D-CRT planning. This difference was statistically significant (homogeneity index 0.11 ± 0.03 vs. 0.07 ± 0.0, p = 0.035). For the bowel, Dmean and D1%, as well as V2 to V60 were reduced in IMRT plans. For the bladder and the rectum, there was no significant difference in Dmean. However, the percentages of volumes receiving at least doses of 30, 40, 45, and 50 Gy (V30 to V50) were lower for the rectum in IMRT plans. The volume of normal tissue receiving at least 2 Gy (V2) was significantly higher in IMRT plans compared with 3D-CRT, whereas at high dose levels (V30) it was significantly lower.

Conclusion

Compared to 3D-CRT, IMRT showed significantly better results regarding dose conformity (p = 0.012) and bowel sparing at dose levels above 30 Gy (p = 0.012). Thus, dose escalation in the radiotherapy of pelvic Ewing’s sarcoma can be more easily achieved using IMRT.

Zusammenfassung

Ziel

Beurteilung und Evaluation möglicher Vorteile der IMRT (intensitätsmodulierte Radiotherapie) im Vergleich zur 3D-CRT (dreidimensionale konventionelle Radiotherapie) bei der Behandlung von Ewing-Sarkomen im Becken.

Patienten und Methodik

Acht Patienten mit Ewing-Sarkomen im Becken wurden hinsichtlich IMRT und 3D-CRT-Plänen analysiert. Es wurden die Abdeckung des Zielvolumens („planning target volume“, PTV), die Konformitäts- und Homogenitätsindizes sowie weitere Parameter verglichen.

Ergebnisse

Die mittlere PTV-Abdeckung war in den 3D-CRT- und IMRT-Plänen vergleichbar. Beide Techniken zeigten eine PTV-Abdeckung von V95 > 98 % bei allen Patienten. Während IMRT-Pläne im Vergleich zu den 3D-CRT-Plänen einen höheren Konformitätsindex zeigten (Konformitätsindex 0,79 ± 0,12 vs. 0,54 ± 0,19; p = 0,012), resultierten die IMRT-Pläne in niedrigerer Dosishomogenität. Dieser Unterschied war statistisch signifikant (Homogenitätsindex 0,11 ± 0,03 vs. 0,07 ± 0,05; p = 0,035). Für den Darm wurden Dmean und D1% sowie V2 bis V60 in den IMRT-Plänen reduziert. Für die Blase und das Rektum gab es keinen signifikanten Unterschied in der Dmean. Für das Rektum waren jedoch V30 bis V50 in den IMRT-Plänen niedriger. Das Volumen des Normalgewebes, das mit mehr als 2 Gy (V2) bestrahlt wurde, war in den IMRT-Plänen im Vergleich zu den 3D-CRT-Plänen signifikant höher, bei hohen Dosen (V30) jedoch signifikant niedriger.

Schlussfolgerung

Im Vergleich zu den 3D-CRT-Plänen zeigten IMRT-Pläne deutlich bessere Ergebnisse im Hinblick auf die Dosiskonformität (p = 0,012) und die Darmschonung im Dosisbereich ≥ 30 Gy (p = 0,012). Eine Dosiserhöhung kann dadurch in der Strahlentherapie von pelvinen Ewing-Tumoren leichter möglich sein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Arai Y, Kun LE, Brooks MT et al (1991) Ewing’s sarcoma: local tumor control and patterns of failure following limited-volume radiation therapy. Int J Radiat Oncol Biol Phys 21:1501–1508

    Article  PubMed  CAS  Google Scholar 

  2. Baglan KL, Frazier RC, Yan D et al (2002) The dose–volume relationship of acute small bowel toxicity from concurrent 5-FU-based chemotherapy and radiation therapy for rectal cancer. Int J Radiat Oncol Biol Phys 52:176–183

    Article  PubMed  Google Scholar 

  3. Bhagat S, Sharma H, Pillai DS, Jane MJ (2008) Pelvic Ewing’s sarcoma: a review from Scottish Bone Tumour Registry. J Orthop Surg 16:333–338

    CAS  Google Scholar 

  4. Bhatnagar A, Deutsch M (2006) The role for intensity modulated radiation therapy (IMRT) in pediatric population. Technol Cancer Res Treat 5:591–595

    PubMed  Google Scholar 

  5. Burgers JM, Oldenburger F, Kraker J de et al (1997) Ewing’s sarcoma of the pelvis: changes over 25 years in treatment and results. Eur J Cancer 33:2360–2367

    Article  PubMed  CAS  Google Scholar 

  6. Capanna R, Toni A, Sudanese A et al (1990) Ewing’s sarcoma of the pelvis. Int Orthop 14:57–61

    Article  PubMed  CAS  Google Scholar 

  7. Churnratanakul S, Wirzba G, Lam T et al (1990) Radiation and the small intestine. Future perspectives for preventive therapy. Dig Dis 8:45–60

    Article  PubMed  CAS  Google Scholar 

  8. Donaldson SS, Jundt S, Ricour C et al (1975) Radiation enteritis in children. Cancer 35:1167–1178

    Article  PubMed  CAS  Google Scholar 

  9. Donati D, El Ghoneimy A, Bertoni F et al (2005) Surgical treatment and outcome of conventional pelvic chondrosarcoma. J Bone Joint Surg Br 87:1527–1530

    Article  PubMed  CAS  Google Scholar 

  10. Dunst J, Jürgens H, Sauer R et al (1995) Radiation therapy in Ewing’s sarcoma: an update of the CESS 86 trial. Int J Radiat Oncol Biol Phys 32:919–930

    Article  PubMed  CAS  Google Scholar 

  11. Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    Article  PubMed  CAS  Google Scholar 

  12. Ferrigno R, Santos A, Martins LC et al (2010) Comparison of conformal and intensity modulated radiation therapy techniques for treatment of pelvic tumors. Analysis of acute toxicity. Radiat Oncol 14:117

    Article  Google Scholar 

  13. Fiorino C, Alongi F, Perna L et al (2009) Dose–volume relationship for acute bowel toxicity for patients treated with pelvic nodal irradiation for prostate cancer. Int J Radiat Oncol Biol Phys 75:29–35

    Article  PubMed  Google Scholar 

  14. Fiorino C, Valdagni R, Rancati T et al (2009) Dose–volume effects for normal tissues in external radiotherapy: pelvis. Radiother Oncol 93:153–167

    Article  PubMed  Google Scholar 

  15. Gunnlaugsson A, Kjellén E, Nilsson P et al (2007) Dose–volume relationships between enteritis and irradiated bowel volumes during 5-fluorouracil and oxaliplatin based chemoradiotherapy in locally advanced rectal cancer. Acta Oncol 46:937–944

    Article  PubMed  CAS  Google Scholar 

  16. Hall EJ, Wuu CS (2003) Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 56:83–88

    Article  PubMed  Google Scholar 

  17. Hall EJ (2006) Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys 65:1–7

    Article  PubMed  Google Scholar 

  18. Hoffmann C, Ahrens S, Dunst J et al (1999) Pelvic Ewing sarcoma: a retrospective analysis of 241 cases. Cancer 85:869–877

    Article  PubMed  CAS  Google Scholar 

  19. Knoos T, Kristensen I, Nilsson P (1998) Volumetric and dosimetric evaluation of radiation treatment plans: radiation conformity index. Int J Radiat Oncol Biol Phys 42:1169–1176

    Article  PubMed  CAS  Google Scholar 

  20. Krasin MJ, Rodriguez-Galindo C, Davidoff AM et al (2004) Efficacy of combined surgery and irradiation for localized Ewings sarcoma family of tumors. Pediatr Blood Cancer 43:229–236

    Article  PubMed  Google Scholar 

  21. La TH, Meyers PA, Wexler LH et al (2006) Radiation therapy for Ewing’s sarcoma: results from Memorial Sloan-Kettering in the modern era. Int J Radiat Oncol Biol Phys 64:544–550

    Article  PubMed  Google Scholar 

  22. Marcus RB Jr, Springfield DS, Graham-Pole JR et al (1991) Late follow-up of a short term intensive regimen for Ewing’s sarcoma. Am J Clin Oncol 14:446–450

    Article  PubMed  Google Scholar 

  23. Mayo CS, Urie MM (2003) A systematic benchmark method for analysis and comparison of IMRT treatment planning algorithms. Med Dosim 28:235–242

    Article  PubMed  Google Scholar 

  24. Mok H, Crane CH et al (2011) Intensity modulated radiation therapy (IMRT): differences in target volumes and improvement in clinically relevant doses to small bowel in rectal carcinoma. Radiat Oncol 6:63

    Article  PubMed  Google Scholar 

  25. Müller AC, Lütjens J, Alber M et al (2012) Toxicity and outcome of pelvic IMRT for node-positive prostate cancer. Strahlenther Onkol 188:982–989

    Article  PubMed  Google Scholar 

  26. Paumier A, Le Péchoux C. Beaudré A et al (2011) IMRT or conformal radiotherapy for adjuvant treatment of retroperitoneal sarcoma? Radiother Oncol 99:73–78

    Article  PubMed  Google Scholar 

  27. Pinkawa M, Piroth MD et al (2011) Combination of dose escalation with technological advances (intensity-modulated and image-guided radiotherapy) is not associated with increased morbidity for patients with prostate cancer. Strahlenther Onkol 187:479–484

    Article  PubMed  Google Scholar 

  28. Rembielak A, Woo TC (2005) Intensity modulated radiation therapy for the treatment of pediatric cancer patients. Nat Clin Pract Oncol 2:211–217

    Article  PubMed  Google Scholar 

  29. Robertson JM, Lockman D, Yan D et al (2008) The dose–volume relationships of small bowel irradiation and acute grade 3 diarrhea during chemoradiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys 70:413–418

    Article  PubMed  CAS  Google Scholar 

  30. Rödl RW, Hoffmann C, Gosheger G et al (2003) Ewing’s sarcoma of the pelvis: combined surgery and radiotherapy treatment. J Surg Oncol 83:154–160

    Article  PubMed  Google Scholar 

  31. Samuelian JM, Callister MD, Ashman JB et al (2012) Reduced acute bowel toxicity in patients treated with intensity-modulated radiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys 82:1981–1987

    Article  PubMed  Google Scholar 

  32. Schuck A, Ahrens S, Paulussen M et al (2003) Local therapy in localized Ewing tumors: results of 1058 patients treated in the CESS 81, CESS 86, and EICESS 92 trials. Int J Radiat Oncol Biol Phys 55:168–177

    Article  PubMed  Google Scholar 

  33. Sher ME, Bauer J (1990) Radiation induced enteropathy. Am J Gastroenterol 85:121–128

    PubMed  CAS  Google Scholar 

  34. Tho LM, Glegg M, Paterson J et al (2006) Acute small bowel toxicity and preoperative chemoradiotherapy for rectal cancer: investigating dose–volume relationships and role for inverse planning. Int J Radiat Oncol Biol Phys 66:505–513

    Article  PubMed  Google Scholar 

  35. Touboul E, Balosso J, Schlienger M, Laugier A (1996) Radiation injury of the small intestine. Radiobiological, radiopathological aspects; risk factors and prevention. Ann Chir 50:58–71

    PubMed  CAS  Google Scholar 

  36. Tucker MA, D’Angio GJ, Boice JD Jr et al (1987) Bone sarcomas linked to radiotherapy and chemotherapy in children. N Engl J Med 317:588–593

    Article  PubMed  CAS  Google Scholar 

  37. Yang R, Xu S, Jiang W et al (2010) Dosimetric comparison of postoperative whole pelvic radiotherapy for endometrial cancer using three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, and helical tomotherapy. Acta Oncol 49:230–236

    Article  PubMed  Google Scholar 

  38. Yang RS, Eckardt JJ, Eilber FR et al (1995) Surgical indications for Ewing’s sarcoma of the pelvis. Cancer 76:1388–1397

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.S. Mounessi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mounessi, F., Lehrich, P., Haverkamp, U. et al. Pelvic Ewing sarcomas. Strahlenther Onkol 189, 308–314 (2013). https://doi.org/10.1007/s00066-012-0304-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0304-z

Keywords

Schlüsselwörter

Navigation