Skip to main content

Advertisement

Log in

Residual tumour volumes and grey zones after external beam radiotherapy (with or without chemotherapy) in cervical cancer patients

A low-field MRI study

Residuale Tumorvolumen und Grauzonen nach externer Strahlentherapie (mit und ohne Chemotherapie) bei Zervixkarzinompatientinnen

Eine Niederfeld-MRT-Studie

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

Grey zones, which are defined as tissue with intermediate signal intensity in the area of primary hyperintense tumour extension, can be seen during radiation with or without chemotherapy on the T2-weighted MRI in patients with cervical cancer. The purpose of this study was to systematically measure the tumour volume at the time of diagnosis and the residual tumour volume at the time of brachytherapy without and with consideration of the grey zones and to estimate tumour regression during external beam radiotherapy (EBRT).

Material and methods

T2-weighted MRI datasets of 175 patients with locally advanced cervical cancer (FIGO stage IB–IVA), who underwent combined external beam radiotherapy and brachytherapy with or without concomitant chemotherapy were available for this study. The gross tumour volume at the time of diagnosis (GTVinit) and at the time of first brachytherapy without (GTVres) and with (GTVres+ GZ) consideration of grey zones were measured for each patient. A descriptive statistical analysis was performed and tumour regression rates without (R) and with consideration of grey zones (RGZ) were calculated. Further, the role of prognostic factors on GTVinit, GTVres, GTVres+ GZ and tumour regression rates was investigated.

Results

The median GTVinit, GTVres, GTVres+ GZ in all patients were 44.4 cm3, 8.2 cm3, 20.3 cm3, respectively. The median R was 78.5% and the median RGZ was 50.1%. The histology and FIGO staging showed a significant impact on GTVinit, GTVres and GTVres+ GZ.

Conclusion

Grey zones represent a substantial proportion of the residual tumour volume at the time of brachytherapy. Differentiation of high signal intensity mass and surrounding intermediate signal intensity grey zones may be reasonable.

Zusammenfassung

Hintergrund

Sogenannte Grauzonen können im Verlauf der Radiochemotherapie auf der T2-gewichteten MRT bei Patientinnen mit Zervixkarzinomen als Areal mit intermediärer Signalintensität im Gebiet des initialen hyperintensen Tumors beobachtet werden. Das Ziel dieser Studie war es, das Tumorvolumen zum Zeitpunkt der Diagnose und zum Zeitpunkt der Brachytherapie mit und ohne Berücksichtigung der Grauzonen zu erfassen und die daraus resultierende Tumorregression während der externen Strahlentherapie (EBRT) zu berechnen.

Material und Methode

T2-gewichtete MRT-Datensätze von 175 Patientinnen mit lokal fortgeschrittenem Zervixkarzinom (FIGO-Stadien IB–IVA), die mittels kombinierter EBRT und Brachytherapie mit und ohne konkomittante Chemotherapie behandelt worden waren, waren für diese Studie verfügbar. Für jede Patientin wurden das „Gross Tumor Volume“ (GTV) zum Zeitpunkt der Diagnose (GTVinit) sowie zum Zeitpunkt der Brachytherapie mit (GTVres+ GZ) und ohne Berücksichtigung der Grauzonen (GTVres) erfasst. Eine deskriptive statistische Analyse wurde durchgeführt und die Tumorregression mit (R) und ohne Berücksichtigung der Grauzonen (RGZ) berechnet. Desweiteren wurden der Einfluss prognostischer Faktoren auf GTVinit, GTVres, GTVres+ GZ und Tumorregressionsraten untersucht.

Ergebnisse

Das mediane GTVinit, GTVres und GTVres+ GZ aller Patientinnen betrug jeweils 44,4 cm3, 8,2 cm3 und 20,3 cm3. Die mediane R lag bei 78,5% und die mediane RGZ bei 50,1%. Die Histologie und das FIGO-Stadium hatten einen signifikanten Einfluss auf GTVinit, GTVres und GTVres+ GZ.

Schlussfolgerung

Grauzonen scheinen als Folge der Tumorregression zu entstehen und haben einen wesentlichen Anteil am Tumorvolumen zum Zeitpunkt der Brachytherapie. Eine MR-tomographische Unterscheidung des Resttumors zum Zeitpunkt der Brachytherapie in hohe und intermediäre Signalintensität erscheint sinnvoll.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Nagy V, Coza O, Ordeanu C et al (2009) Radiotherapy versus concurrent 5-day cisplatin and radiotherapy in locally advanced cervical carcinoma. Long term results of a phase III randmoized trial. Strahlenther Onkol 185:177–183

    Article  PubMed  Google Scholar 

  2. Patyánik M, Nemeskéri C, Sinkó D et al (2009) Concomitant radiochemotherapy of cervical cancer: is it justified to reduce the dosage of cisplatin? Strahlenther Onkol 185:582–587

    Article  PubMed  Google Scholar 

  3. Marnitz S, Stromberger C, Kawgan-Kagan M et al (2010) Helical tomotherapy in cervical cancer patients: simultaneous integrated boost concept: technique and acute toxicity. Strahlenther Onkol 186:572–579

    Article  PubMed  Google Scholar 

  4. Heinzelmann F, Henke G, von Grafenstein M et al (2012) Adjuvant radiochemotherapy in patients with locally advanced high-risk cervical cancer. Strahlenther Onkol 188:568–575

    Article  PubMed  CAS  Google Scholar 

  5. Gruen A, Musik T, Köhler C et al (2011) Adjuvant chemoradiation after laparoscopically assisted vaginal radical hysterektomy (LARVH) in patients with cervical cancer: oncologic outcome and morbidity. Strahlenther Onkol 187:344–349

    Article  PubMed  Google Scholar 

  6. Mayr NA, Taoka T, Yuh WTC et al (2002) Method and timing of tumor volume measurement for outcome prediction in cervical cancer using magnetic resonance imaging. Int J Radiat Oncol Biol Phys 52:14–22

    Article  PubMed  Google Scholar 

  7. Nam H, Park W, Huh SJ et al (2007) The prognostic significance of tumor volume regression during radiotherapy and concurrent chemoradiotherapy for cervical cancer using MRI. Gynecol Oncol 107:320–325

    Article  PubMed  Google Scholar 

  8. Wang JZ, Mayr NA, Zhang D et al (2010) Sequential magnetic resonance imaging of cervical cancer: the predictive value of absolute tumor volume and regression ratio measured before, during, and after radiation therapy. Cancer 116:5093–5101

    Article  PubMed  Google Scholar 

  9. Dimopoulos JCA, Schard G, Berger D et al (2006) Systematic evaluation of MRI findings in different stages of treatment of cervical cancer: potential of MRI on delineation of target, pathoanatomic structures, and organs at risk. Int J Radiat Oncol Biol Phys 64:1380–1388

    Article  PubMed  Google Scholar 

  10. Brocker KA, Alt CD, Eichbaum M et al (2011) Imaging of female pelvic malignancies regarding MRI, CT, and PET/CT: Part 1. Strahlenther Onkol 187:611–618

    Article  PubMed  Google Scholar 

  11. Alt CD, Brocker KA, Eichbaum M et al (2011) Imaging of female pelvic malignancies regarding MRI, CT, and PET/CT: Part 2. Strahlenther Onkol 187:705–714

    Article  PubMed  Google Scholar 

  12. Mayr NA, Tali ET, Yuh WT et al (1993) Cervical cancer: application of MR imaging in radiation therapy. Radiology 189:601–608

    PubMed  CAS  Google Scholar 

  13. Flueckiger F, Ebner F, Poschauko H et al (1992) Cervical cancer: serial MR imaging before and after primary radiation therapy–a 2-year follow-up study. Radiology 184:89–93

    PubMed  CAS  Google Scholar 

  14. Sironi S, Belloni C, Taccagni G et al (1991) Invasive cervical carcinoma: MR imaging after preoperative chemotherapy. Radiology 180:719–722

    PubMed  CAS  Google Scholar 

  15. Haie-Meder C, Pötter R, Van Limbergen E et al (2005) Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol 74:235–245

    Article  PubMed  Google Scholar 

  16. Pötter R, Dimopoulos J, Georg P et al (2007) Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol 83:148–155

    Article  PubMed  Google Scholar 

  17. Pötter R, Georg P, Dimopulos J et al (2011) Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother Oncol 100:116–123

    Article  PubMed  Google Scholar 

  18. Vincens E, Balleyguier C, Rey A et al (2008) Accuracy of magnetic resonance imaging in predicting residual disease in patients treated for stage IB2/II cervical carcinoma with chemoradiation therapy. Cancer 113:2158–2164

    Article  PubMed  Google Scholar 

  19. Allen SD, Padhani AR, Dzik-Jurasz AS, Glynne-Jones R (2007) Rectal carcinoma: MRI with histologic correlation before and after chemoradiation therapy. AJR Am J Roentgenol 188:442–451

    Article  PubMed  Google Scholar 

  20. Dresen RC, Beets GL, Rutten, HJT et al (2009) Locally advanced rectal cancer: MR Imaging for restaging after neoadjuvant radiation therapy with concomitant chemotherapy Part I. Are we able to predict tumor confined to the rectal wall? Radiology 252:71–80

    Article  PubMed  Google Scholar 

  21. Chargari C, Magné N, Dumas I et al (2009) Physics contributions and clinical outcome with 3D-MRI-based pulsed-dose-rate intracavitary brachytherapy in cervical cancer patients. Int J Rad Oncol Biol Phys 74:133–139

    Article  Google Scholar 

  22. Toita T, Kakinohana Y, Shinzato S et al (1999) Tumor diameter/volume and pelvic node status assessed by magnetic resonance imaging (MRI) for uterine cervical cancer treated with irradiation. Int J Radiat Oncol Biol Phys 43:777–782

    Article  PubMed  CAS  Google Scholar 

  23. Hatano K, Sekiya Y, Araki H et al (1999) Evaluation of the therapeutic effect of radiotherapy on cervical cancer using magnetic resonance imaging. Int J Radiat Oncol Biol Phys 45:639–644

    Article  PubMed  CAS  Google Scholar 

  24. Kirisits C, Pötter R, Lang S et al (2005) Dose and volume parameters for MRI-based treatment planning in intracavitary brachytherapy for cervical cancer. Int J Radiat Oncol Biol Phys 262:901–911

    Article  Google Scholar 

  25. Ohara K, Oki A, Tanaka YO et al (2006) Early determination of uterine cervical squamous cell carcinoma radioresponse identifies high- and low-response tumors. Int J Radiat Oncol Biol Phys 64:1179–1182

    Article  PubMed  Google Scholar 

  26. Lim K, Chan P, Dinniwell R et al (2008) Cervical cancer regression measured using weekly magnetic resonance imaging during fractionated radiotherapy: radiobiologic modeling and correlation with tumor hypoxia. Int J Radiat Oncol Biol Phys 70:126–133

    Article  PubMed  Google Scholar 

  27. Dimopoulos JCA, Schirl G, Baldinger A et al (2009) MRI assessment of cervical cancer for adaptive radiotherapy. Strahlenther Onkol 185:282–287

    Article  PubMed  Google Scholar 

  28. Tanderup K, Nielsen SK, Nyvang GB et al (2010) From point A to the sculpted pear: MR image guidance significantly improves tumour dose and sparing of organ at risk in brachytherapy of cervical cancer. Radiother Oncol 94(2):173–180

    Article  PubMed  Google Scholar 

  29. Haie-Meder C, Chargari C, Rey A et al (2010) MRI-based low dose-rate brachytherapy experience in locally advanced cervical cancer patients initially treated by concomitant chemoradiotherapy. Radiother Oncol 96:161–165

    Article  PubMed  Google Scholar 

  30. Jamema SV, Kirisits C, Mahanshetty U et al (2010) Comparison of DVH parameters and patterns of standard loading, manual and inverse optimization for intracavitary brachytherapy on a subset of tandem/ovoid cases. Radiother Oncol 97:501–506

    Article  PubMed  Google Scholar 

  31. Mayr NA, Yuh WTC, Taoka T et al (2006) Serial therapy-induced changes in tumor shape in cervical cancer and their impact on assessing tumor volume and treatment response. AJR Am J Roentgenol 187:65–72

    Article  PubMed  Google Scholar 

  32. Barillot I, Horiot JC, Pigneux J et al (1997) Carcinoma of the intact uterine cervix treated with radiotherapy alone: a French cooperative study: update and multivariate analysis of prognostics factors. Int J Radiat Oncol Biol Phys 38:969–978

    Article  PubMed  CAS  Google Scholar 

  33. Hong JH, Tsai CS, Wang CC et al (2000) Comparison of clinical behaviors and responses to radiation between squamous cell carcinomas and adenocarcinomas/adenosquamous carcinomas of the cervix. Chang Gung Med J 23:396–404

    PubMed  CAS  Google Scholar 

  34. Dimopoulos JCA, Petrow P, tanderup K et al (2012) Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother Oncol 103:113–122

    Article  PubMed  Google Scholar 

  35. Zahra MA, Tan LT, Priest AN et al (2009) Semiquantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging measurements predict radiation response in cervix cancer. Int J Radiat Oncol Biol Phys 74:766–773

    Article  PubMed  Google Scholar 

  36. Mayr NA, Wang JZ, Zhang D et al (2010) Longitudinal changes in tumor perfusion pattern during the radiation therapy course and its clinical impact in cervical cancer. Int J Radiat Oncol Biol Phys 77:502–508

    Article  PubMed  Google Scholar 

  37. Mayr NA, Huang Z, Wang JZ et al (2012) Characterizing tumor heterogeneity with functional imaging and quantifying high-risk tumor volume for early prediction of treatment outcome: Cervical cancer as a model. Int J Radiat Oncol Biol Phys 83:972–979

    PubMed  Google Scholar 

Download references

Acknowledgement

This study was granted by the Medical Scientific Fund of the Mayor of the City of Vienna: Project No. 07063.

Conflict of interest

On behalf of all authors, the corresponding author states the following: the Department of Radiotherapy at the Medical University of Vienna receives/received financial and/or equipment support for research and educational purposes from Nucletron B.V., Varian Medical Systems, Inc., and Isodose Control B.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.P. Schmid MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, M., Mansmann, B., Federico, M. et al. Residual tumour volumes and grey zones after external beam radiotherapy (with or without chemotherapy) in cervical cancer patients. Strahlenther Onkol 189, 238–245 (2013). https://doi.org/10.1007/s00066-012-0260-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0260-7

Keywords

Schlüsselwörter

Navigation