Skip to main content
Log in

Die technischen und methodischen Entwicklungen der Radioonkologie aus ärztlicher Sicht

Technical and methodical developments of radiation oncology from a physician’s point of view

  • Originalien
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Zusammenfassung

Technische und methodische Entwicklungen der letzten 40 Jahre haben das Gesicht der Radioonkologie wesentlich verändert. Moderne bildgebende Verfahren, wie Computertomographie (CT), Magnetresonanztomographie (MRI), Positronenemissionstomographie (PET) und Ultraschall haben nicht nur die Erkennbarkeit von Tumoren verbessert, sondern fanden auch Eingang in die computerisierte Bestrahlungsplanung. Die Megavoltbestrahlung mit Photonen und Elektronen aus Beschleunigern mit großen und kleinen Bestrahlungsfeldern, mit Fluenz(Intensitäts)modulation (IMRT), bildgeführter Strahlentherapie (IGRT), stereotaktischer Radiotherapie und Radiochirurgie, intraoperativer Strahlentherapie (IORT) sowie die moderne Brachytherapie im ferngesteuerten Afterloading-Verfahren haben zunehmend Methoden für immer präzisere Strahlenapplikationen bis hin zur Hochpräzisionsbestrahlung zur Verfügung gestellt. Hadronentherapie hat dabei ein weiteres Entwicklungspotential. Die Radioonkologie ist mit diesen Methoden an der Hälfte aller Kurationen beteiligt und hat ein hohes Potenzial in der palliativen Therapie. Die moderne Strahlentherapie ist heute interdisziplinär und berücksichtigt zunehmend Interaktionen mit neuen Medikamenten sowie differenzierten operativen Methoden. Daher besteht ein umfassender Evaluationsbedarf der neuen Methoden wie auch ein hoher Bedarf an translationaler Forschung auf den Gebieten der Tumor- und Normalgewebsbiologie sowie der medizinischen Physik und Technik.

Abstract

Technical and methodical developments have changed radiation oncology substantially over the last 40 years. Modern imaging methods, e.g., computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasound (US), have not only improved the detection of tumors but have also become tools for computed treatment planning. Megavoltage irradiation with accelerators using photons and electrons with large and small fields, intensity modulation (IMRT), image-guided radiotherapy (IGRT), stereotactic irradiation and radiosurgery, intraoperative radiotherapy (IORT), and modern remote controlled afterloading brachytherapy have made high precision radiotherapy increasingly possible. Hadron therapy has potential for further developments. Radiation oncology today is an interdisciplinary modality and increasingly considers interactions with new drugs and differentiated surgical methods. There is a strong need for comprehensive evaluation of the new methods and also for translational research in biology of tumors and normal tissue biology as well as in medical physics and techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Kaplan HS (1972) Hodgkin’s disease, Cambridge, Mass. Harvard University Press. Zitiert nach: Musshoff K, Slanina J (1976) Maligne Systemerkrankungen. In: Scherer E (Hrsg) Strahlentherapie, 1. Aufl. Springer, S 733

  2. Suit H (1983) Radiation biology: the conceptual and practical impact on radiation therapy. Radiat Res 10–40. Zitiert nach: Halperin EC, Perez CA, Brady LW (2008) The discipline of radiation oncology. In: Perez and Brady’s principles and practice of radiation. Oncology, 5. Aufl. S 2–75)

  3. Eich HT, Müller RP, Engenhart-Cabillic R et al (2008) Involved-node radiotherapy in early-stage Hodgkin’s lymphoma. Definition and guidelines of the German Hodgkin Study Group (GHSG). Strahlenther Onkol 184(8):406–410

    Article  PubMed  Google Scholar 

  4. Salazar OM, DaMotta NW, Bridgman SM et al (1996) Fractionated half-body irradiation for pain palliation in widely metastatic cancers: comparison with single dose. Int J Radiat Oncol Biol Phys 36(1):49–60

    Article  PubMed  CAS  Google Scholar 

  5. Salazar OM, Rubin P, Hendrickson FR et al (1986) Single-dose half-body irradiation for palliation of multiple boueg metastases from solid tumors. Final Radiation Therapy Oncology Group report. Cancer 58(1):29–36

    Article  PubMed  CAS  Google Scholar 

  6. Gunderson LL, Sosin H (1974) Areas of failure found at reoperation (second or symptomatic look), following curative surgery for adenocarcinoma of rectum. Cancer 34(4):1278–1292

    Article  PubMed  CAS  Google Scholar 

  7. Jensen JM, Brix F, Hancken C et al (1988) Field-integrated dosage modification (FIDM). 2. The physical principles of the procedure. Strahlenther Onkol 164(2):85–90

    PubMed  CAS  Google Scholar 

  8. Brix F, Christiansen R, Hancken C et al (1988) The field integrated dose modification (FIDM): three typical clinical applications of a new irradiation technique. Radiother Oncol 12(3):199–207

    Article  PubMed  CAS  Google Scholar 

  9. Nilsson S, Norlen BJ, Widmark A (2004) A systematic overview of radiation therapy effects in prostate cancer. Acta Oncol 43:316–381

    Article  PubMed  Google Scholar 

  10. Zelefsky MJ, Fuks Z, Happersett L et al (2000) Clinical experience with intensity modulated radiation therapy (IMRT) in prostate cancer. Radiother Oncol 55:241–249

    Article  PubMed  CAS  Google Scholar 

  11. Zelefsky MJ, Fuks Z, Hunt M et al (2002) High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys 53:1111–1116

    Article  PubMed  Google Scholar 

  12. Kuppersmith RB, Greco SC, Teh BS et al (1999) Intensity-modulated radiotherapy: first results with this new technology on neoplasms of the head and neck. Ear Nose Throat J 78:238–241

    PubMed  CAS  Google Scholar 

  13. Butler EH, The BS, Grant WH et al (1999) SMART (Simultaneous Modulated Accelerated Radiation Therapy) boost: a new accelerated fractionation schedule for the treatment of head and neck cancer with intensity modulated radiotherapy. Int J Radiat Oncol Biol Phys 45:21–32

    Article  PubMed  CAS  Google Scholar 

  14. Chao KS, Deasy JO, Markman J et al (2001) A prospective study of salivary function sparing in patients with head-and-neck cancers receiving intensity-modulated or three-dimensional radiation therapy: initial results. Int J Radiat Oncol Biol Phys 49:907–916

    Article  PubMed  CAS  Google Scholar 

  15. Chao KS, Majhail N, Huang CJ et al (2001) Intensity-modulated radiation therapy reduces late salivary toxicity without compromising tumor control in patients with oropharyngeal carcinoma: a comparison with conventional techniques. Radiother Oncol 61:275–280

    Article  PubMed  CAS  Google Scholar 

  16. Cheng JC, Chao KS, Low DA et al (2001) Comparison of intensity modulated radiation therapy (IMRT) treatment techniques for nasopharyngeal carcinoma. Int J Cancer 96:126–131

    Article  PubMed  CAS  Google Scholar 

  17. Lin A, Kim HM, Terrell JE et al (2003) Quality of life after parotid-sparing IMRT for head-and-neck cancer: a prospective longitudinal study. Int J Radiat Oncol Biol Phys 57:61–70

    Article  PubMed  Google Scholar 

  18. Lee N, Xia P, Quivey JM et al (2002) Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: an update of the UCSF experience. Int J Radiat Oncol Biol Phys 53:12–22

    Article  PubMed  Google Scholar 

  19. Wolden SL, Chen WC, Pfister DG et al (2005) Intensity-modulated radiationtherapy (IMRT) for nasopharynx cancer: update of the Memorial Sloan kettering experience. Int J Radiat Oncol Biol Phys 64(1):57–62

    Article  PubMed  Google Scholar 

  20. Yao M, Dornfeld KJ, Buatti JM et al (2005) Intensity-modulated radiationtreatment for head-and-neck squamous cell carcinoma-the University of Iowa experience. Int J Radiat Oncol Biol Phys 63:410–421

    Article  PubMed  Google Scholar 

  21. Chao KS, Wippold FJ, Ozyigit G et al (2005) Determination and delineation of nodal target volumes for head-and-neck cancer based on patterns of failure in patients receiving definitive and postoperative IMRT. Int J Radiat Oncol Biol Phys 53:1117–1184

    Google Scholar 

  22. Dawson LA, Anzai Y, Marsh L et al (2000) Patterns of local-regional recurrence following parotid-sparing conformal and segmental intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 46:1117–1126

    Article  PubMed  CAS  Google Scholar 

  23. Münter MW, Thilmann C, Hof H et al (2003) Stereotactic intensity modulated radiation therapy and inverse treatment planning for tumors of the head and neck region: clinical implementation of the step and shoot approach and first clinical results. Radiother Oncol 66:313–321

    Article  PubMed  Google Scholar 

  24. Nestle U, Kremp S, Grosu AL (2006) Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 81(2):209–225

    Article  PubMed  CAS  Google Scholar 

  25. Grosu AL, Piert M, Weber WA et al (2005) Positron emission tomography for radiation treatment planning. Strahlenther Onkol 181(8):483–499

    Article  PubMed  Google Scholar 

  26. Sura S, Greco C, Gelblum D et al (2008) (18)F-fluorodeoxyglucose positron emission tomography-based assessment of local failure patterns in non-small-cell lung cancer treated with definitive radiotherapy. Int J Radiat Oncol Biol Phys 70(5):1397–1402

    Article  PubMed  Google Scholar 

  27. Reske SN, Kotzerke J (2001) FDG-PET for clinical use. Results of the 3rd German Interdisciplinary Consensus Conference, „Onko-PET III“, 21 July and 19 September 2000. Eur J Nucl Med 28(11):1707–1723

    Article  PubMed  CAS  Google Scholar 

  28. Bartlett NL (2008) Modern treatment of Hodgkin lymphoma. Curr Opin Hematol 15(4):408–414

    Article  PubMed  Google Scholar 

  29. Grosu AL, Weber WA, Franz M et al (2005) Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 63(2):511–519

    Article  PubMed  CAS  Google Scholar 

  30. Astner ST, Dobrei-Ciuchendea M, Essler M et al (2008) Effect of 11C-methionine-positron emission tomography on gross tumor volume delineation in stereotactic radiotherapy of skull base meningiomas. Int J Radiat Oncol Biol Phys 72(4):1161–1167

    Article  PubMed  Google Scholar 

  31. Andrews DW, Scott CB, Sperduto PW et al (2004) Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 363(9422):1665–1672

    Article  PubMed  Google Scholar 

  32. Mehta MP, Tsao MN, Whelan TJ et al (2005) The American Society for Therapeutic Radiology and Oncology (ASTRO) evidence-based review of the role of radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys 63(1):37–46

    Article  PubMed  Google Scholar 

  33. Pollock BE, Stafford SL (2005) Results of stereotactic radiosurgery for patients with imaging defined cavernous sinus meningiomas. Int J Radiat Oncol Biol Phys 62(5):1427–1431

    Article  PubMed  Google Scholar 

  34. Kondziolka D, Flickinger JC, Dade Lunsford L (2011) Clinical research in stereotactic radiosurgery: lessons learned from over 10,000 cases. Neurol Res 33(8):792–802

    Article  PubMed  Google Scholar 

  35. Sheehan JP, Niranjan A, Sheehan JM et al (2005) Stereotactic radiosurgery for pituitary adenomas: an intermediate review of its safety, efficacy, and role in the neurosurgical treatment armamentarium. J Neurosurg 102(4):678–691

    Article  PubMed  Google Scholar 

  36. Wegner RE, Oysul K, Pollock BE et al (2011) A modified radiosurgery-based arteriovenous malformation grading scale and its correlation with outcomes. Int J Radiat Oncol Biol Phys 79(4):1147–1150

    Article  PubMed  Google Scholar 

  37. Andratschke N, Zimmermann F, Boehm E et al (2011) Stereotactic radiotherapy of histologically proven inoperable stage I non-small cell lung cancer: patterns of failure. Radiother Oncol 101(2):245–249

    Article  PubMed  Google Scholar 

  38. Stephans K (2012) Stereotactic body radiotherapy for stage I non-small cell lung cancer. Cleve Clin J Med 79(Electronic Suppl1):e26–31

    Article  Google Scholar 

  39. Cox BW, Spratt DE, Lovelock M et al (2012) International spine radiosurgery consortium consensus guidelines for target volume definition in spinal stereotactic radiosurgery. Int J Radiat Oncol Biol Phys [Epub ahead of print]

  40. Zamboglou C, Messmer MB, Becker G et al (2012) Stereotactic radiotherapy in the liver hilum. Basis for future studies. Strahlenther Onkol 188(1):35–41

    Article  PubMed  CAS  Google Scholar 

  41. Sautter-Bihl ML, Sedlmayer F, Budach W et al (2010) Intraoperative radiotherapy as accelerated partial breast irradiation for early breast cancer: beware of one-stop shops? Strahlenther Onkol 186(12):651–657

    Article  PubMed  Google Scholar 

  42. De Ruysscher D, Mark Lodge M, Jones B et al (2012) Charged particles in radiotherapy: a 5-year update of a systematic review. Radiother Oncol 103(1):5–7

    Article  Google Scholar 

  43. Allen AM, Pawlicki T, Dong L et al (2012) An evidence based review of proton beam therapy: the report of ASTRO’s emerging technology committee. Radiother Oncol 103(1):8–11

    Article  PubMed  Google Scholar 

  44. Halperin EC, Perez CA, Brady LW (2008) The discipline of radiation oncology. In: Perez and Brady’s principles and practice of radiation. Oncology, 5. Aufl., S 2–75

  45. Grimm P, Billiet I, Bostwick D et al (2012) Comparative analysis of prostate-specific antigen free survival outcomes for patients with low, intermediate and high risk prostate cancer treatment by radical therapy. Results from the Prostate Cancer Results Study Group. BJU Int 109(Suppl 1):22–29

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Willich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willich, N. Die technischen und methodischen Entwicklungen der Radioonkologie aus ärztlicher Sicht. Strahlenther Onkol 188 (Suppl 3), 253–262 (2012). https://doi.org/10.1007/s00066-012-0190-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0190-4

Schlüsselwörter

Keywords

Navigation