Skip to main content
Log in

Patient positioning variations to reduce dose to normal tissues during 3D conformal radiotherapy for high-risk prostate cancer

Positionierungsvarianten der Patienten zur Dosisreduzierung an gesundem Gewebe bei der 3-D-konformalen Strahlentherapie hochriskanter Prostatakarzinome

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

The goal of this work was to assess optimal treatment positioning of 3D conformal radiotherapy (3DCRT) for high-risk prostate cancer patients.

Patients and methods

Treatment plans of 25 patients in different patient positions were evaluated: with knee and ankle support (KAS) in the supine position and with a belly board (BB) in the prone position both with full (FB) and empty bladder (EB). Planning target volumes (PTVs) for pelvis, prostate and vesicles, prostate, and organs at risk (OARs) were delineated. Dose and overlapping volumes were evaluated.

Results

Overlapping volumes were significantly smaller with a FB than with an EB. No significant differences were found in overlapping volumes with respect to patient fixation systems, but the percentage values of dose to the OARs showed significantly better results employing KAS than a BB. A FB reduced the dose volumes to the OARs. Comparison with respect to circumference of abdomen (CA) showed significantly smaller overlapping at large CA in most of the cases.

Conclusion

Supine position is suggested with KAS combined with a FB (especially in cases of larger CA) when using 3DCRT with planning technique modification for high-risk prostate cancer patients to reduce the dose of OARs, based on our results.

Zusammenfassung

Hintergrund und Ziel

Das Ziel dieser Arbeit ist die Festlegung der optimalen Bestrahlungsposition in der 3-D-konformalen Strahlentherapie (3DKRT) für Hochrisikoprostatakarzinompatienten.

Patienten und Methoden

Bestrahlungspläne von 25 Patienten in unterschiedlichen Lagerungspositionen wurden ausgewertet: mit Knie- und Knöchelunterstützung (KKU), in Rückenlage und mit dem Bauchbrett (BB) in Bauchlage, sowohl mit voller (VB) als auch mit leerer Blase (LB). Die geplanten Zielvolumina (ZVs) für Becken, Prostata plus Samenblasen sowie für Prostata und Risikoorgane (RO) wurden konturiert. Dosisvolumina und überlappende Volumina wurden ausgewertet.

Ergebnisse

Überlappende Volumina waren mit VB signifikant kleiner als mit LB. Es wurden keine signifikanten Unterschiede im Bezug auf Patientenimmobilisationssysteme gefunden, aber die prozentualen Dosisvolumina der RO zeigten bessere Resultate wenn KKU anstelle des BB angewendet wurde. Mit VB reduzierten sich die Dosisvolumina der RO. Vergleiche bezüglich des abdominellen Umfangs (AU) haben in den meisten Fällen signifikant kleinere Überlappungen bei großem AU gezeigt.

Schlussfolgerung

Auf Grund unserer Ergebnisse ist die Bestrahlungspositionierung mit KKU und VB in Rückenlage (speziell bei Fällen mit großem AU) bei 3DKRT mit Modifikation der Bestrahlungsplanung für hochriskante Prostatakarzinompatienten zur Dosisreduktion der RO zu empfehlen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Bayley AJ, Catton CN, Haycocks T et al (2004) A randomized trial of supine vs. prone positioning in patients undergoing escalated dose conformal radiotherapy for prostate cancer. Radiother Oncol 70:37–44

    Article  PubMed  Google Scholar 

  2. Bittner N, Butler WM, Reed JL et al (2010) Electromagnetic tracking of intrafraction prostate displacement in patients externally immobilized in the prone position. Int J Radiat Oncol Biol Phys 77:490–495

    Article  PubMed  Google Scholar 

  3. Czigner K, Ágoston P, Forgács GY et al (2009) Assessment of overlapping of organs at risk and planning target volumes at high risk prostate cancer irradiation. Radiother Oncol 92(Suppl 1):69

    Google Scholar 

  4. Dawson LA, Litzenberg DW, Brock KK et al (2000) A comparison of ventilatory prostate movement in four treatment positions. Int J Radiat Oncol Biol Phys 48:319–323

    Article  PubMed  CAS  Google Scholar 

  5. De Meerleer GO, Villeirs GM, Vakaet L et al (2004) The incidence of inclusion of the sigmoid colon and small bowel in the planning target volume in radiotherapy for prostate cancer. Strahlenther Onkol 180:573–581

    Google Scholar 

  6. Dolezel M, Odrazka K, Vaculikova M et al (2010) Dose escalation in prostate radiotherapy up to 82 Gy using simultaneous integrated boost: direct comparison of acute and late toxicity with 3D-CRT 74 Gy and IMRT 78 Gy. Strahlenther Onkol 186:197–202

    Article  PubMed  Google Scholar 

  7. Gallagher MJ, Brereton HD, Rostock RA et al (1986) A prospective study of treatment techniques to minimise the volume of pelvic small bowel with reduction of acute and late effects associated with pelvic irradiation. Int J Radiat Oncol Biol Phys 12:1565–1573

    Article  PubMed  CAS  Google Scholar 

  8. Hanks GE, Hanlon AL, Epstein B et al (2002) Dose response in prostate cancer with 8–12 years follow-up. Int J Radiat Oncol Biol Phys 54:427–435

    Article  PubMed  Google Scholar 

  9. Hentschel B, Oehler W, Strauss D et al (2011) Definition of the CTV prostate in CT and MRI by using CT-MRI image fusion in IMRT planning for prostate cancer. Strahlenther Onkol 187:183–190

    Article  PubMed  Google Scholar 

  10. Hille A, Töws N, Schmidberger H, Hess CF (2005) A prospective three-dimensional analysis about the impact of differences in the clinical target volume in prostate cancer irradiation on normal-tissue exposure. A potential for increasing the benefit/risk ratio. Strahlenther Onkol 181:789–795

    Article  PubMed  Google Scholar 

  11. Huang EH, Pollack A, Levy L et al (2002) Late rectal toxicity: dose–volume effects of conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 54:1314–1321

    Article  PubMed  Google Scholar 

  12. Kato T, Obata Y, Kadoya N et al (2009) A comparison of prone three-dimensional conformal radiotherapy with supine intensity-modulated radiotherapy for prostate cancer: which technique is more effective for rectal sparing? Br J Radiol 82:654–661

    Article  PubMed  CAS  Google Scholar 

  13. Kitamura K, Shirato H, Seppenwoolde Y et al (2002) Three-dimensional intrafractional movement of prostate measured during real-time tumortracking radiotherapy in supine and prone treatment positions. Int J Radiat Oncol Biol Phys 53:1117–1123

    Article  PubMed  Google Scholar 

  14. Kuban DA, Tucker SL, Dong L et al (2008) Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys 70:67–74

    Article  PubMed  Google Scholar 

  15. Liu B, Lerma FA, Patel S et al (2008) Dosimetric effects of the prone and supine positions on image guided localized prostate cancer radiotherapy. Radiother Oncol 88:67–76

    Article  PubMed  Google Scholar 

  16. McLaughlin PW, Evans C, Feng M et al (2010) Radiographic and anatomic basis for prostate contouring errors and methods to improve prostate contouring accuracy. Int J Radiat Oncol Biol Phys 76:369–378

    Article  PubMed  Google Scholar 

  17. McLaughlin PW, Wygoda A, Sahijdak W et al (1999) The effect of patient position and treatment technique in conformal treatment of prostate cancer. Int J Radiat Oncol Biol Phys 45:407–413

    Article  PubMed  CAS  Google Scholar 

  18. Michalski JM, Bae K, Roach M et al (2010) Long-term toxicity following 3D conformal radiation therapy for prostate cancer from the RTOG 9406 phase I/II dose escalation study. Int J Radiat Oncol Biol Phys 76:14–22

    Article  PubMed  Google Scholar 

  19. Michalski JM, Purdy JA, Winter K et al (2000) Preliminary report of toxicity following 3D radiation therapy for prostate cancer on 3DOG/RTOG 9406. Int J Radiat Oncol Biol Phys 46:391–402

    Article  PubMed  CAS  Google Scholar 

  20. Nakamura N, Shikama N, Takahashi O et al (2010) Variability in bladder volumes of full bladders in definitive radiotherapy for cases of localized prostate cancer. Strahlenther Onkol 186:637–642

    Article  PubMed  Google Scholar 

  21. Onal C, Topkan E, Efe E et al (2009) Comparison of rectal volume definition techniques and their influence on rectal toxicity in patients with prostate cancer treated with 3D conformal radiotherapy: a dose-volume analysis. Radiat Oncol 11(4):14

    Article  Google Scholar 

  22. O’Neill L, Armstrong J, Buckney S et al (2008) A phase II trial for the optimisation of treatment position in the radiation therapy of prostate cancer. Radiother Oncol 88:61–66

    Article  Google Scholar 

  23. Pinkawa M, Piroth MD, Holy R et al (2011) Combination of dose escalation with technological advances (intensity-modulated and image-guided radiotherapy) is not associated with increased morbidity for patients with prostate cancer. Strahlenther Onkol 187:479–484

    Article  PubMed  Google Scholar 

  24. Shah AP, Kupelian PA, Willoughby TR et al (2011) An evaluation of intrafraction motion of the prostate in the prone and supine positions using electromagnetic tracking. Radiother Oncol 99:37–43

    Article  PubMed  Google Scholar 

  25. Storey MR, Pollack A, Zagars G (2000) Complications from radiotherapy dose escalation in prostate cancer: preliminary results of a randomized trial. Int J Radiat Oncol Biol Phys 48:635–642

    Article  PubMed  CAS  Google Scholar 

  26. Szumacher E, Harnett N, Warner S et al (2010) Effectiveness of educational intervention on the congruence of prostate and rectal contouring as compared with a gold standard in three-dimensional radiotherapy for prostate. Int J Radiat Oncol Biol Phys 76:379–385

    Article  PubMed  Google Scholar 

  27. Viani GA, Stefano EJ, Afonso SL (2009) Higher-than-conventional radiation doses in localized prostate cancer treatment: a meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys 74:1405–1418

    Article  PubMed  Google Scholar 

  28. Wilder RB, Chittenden L, Mesa AV et al (2009) A prospective study of intrafraction prostate motion in the prone vs. supine position. Int J Radiat Oncol Biol Phys 77:165–170

    Article  PubMed  Google Scholar 

  29. Zelefsky MJ, Happersett L, Leibel SA et al (1997) The effect of treatment positioning on normal tissue dose in patients with prostate cancer treated with three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 37:13–19

    Article  PubMed  CAS  Google Scholar 

  30. Zelefsky MJ, Leibel SA, Gaudin PB et al (1998) Dose escalation with three-dimensional conformal radiation therapy affects the outcome in prostate cancer. Int J Radiat Oncol Biol Phys 41:491–500

    Article  PubMed  CAS  Google Scholar 

  31. Zelefsky MJ, Levin EJ, Hunt M et al (2008) Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 70:1124–1129

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The corresponding author states the following: there is no actual or potential conflict of interest. None of the authors has had a relationship with an entity that has a financial interest in the subject matter discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Czigner M.Sc..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czigner, K., Ágoston, P., Forgács, G. et al. Patient positioning variations to reduce dose to normal tissues during 3D conformal radiotherapy for high-risk prostate cancer. Strahlenther Onkol 188, 816–822 (2012). https://doi.org/10.1007/s00066-012-0126-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0126-z

Keywords

Schlüsselwörter

Navigation