Skip to main content

Advertisement

Log in

Respiratory gated [18F]FDG PET/CT for target volume delineation in stereotactic radiation treatment of liver metastases

Stellenwert der atemgetriggerten [18F]FDG-PET/CT in der Zielvolumendefinition für die stereotaktische Bestrahlung von Lebermetastasen

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

The use of 4D-[18F]fluorodeoxyglucose (FDG) PET/CT in combination with respiratory gated magnet resonance imaging (MRI) in target volume definition for stereotactic radiation of liver metastases was investigated.

Methods and materials

A total of 18 patients received respiration gated FDG-PET/CT and MRI. Data were fused using a rigid co-registration algorithm. The quality of the co-registration was rated on a scale from 1 (excellent) to 5 (poor) for co-registration of MRI with gated PET and ungated PET. Gross tumor volume (GTV) was delineated in CT (GTV CT), MRI (GTVMRI), and PET (GTVPET). MRI- and PET-based GTVs were defined by three observers each. Interobserver variability was calculated for all patients as well as for subgroups with and without previous treatment of liver metastases. All GTVs were compared for all patients and separately for patients with previous local therapy. In addition, a semiautomatic segmentation algorithm was applied on the PET images.

Results

Co-registration  between MR and PET images was rated with 3.3 in average when non-gated PET was used and improved significantly (p < 0.01) to 2.1 using gated PET. The average GTVCT  was 51.5 ml, GTVMRI  51.8 ml, and the average GTVPET  48.1 ml. Volumes delineated in MRI were 9.9% larger compared to those delineated in CT. Volumes delineated in PET were 13.8% larger than in MRI. The differences between the GTVs were more pronounced in patients with previous treatment. The GTVs defined in MRI showed an interobserver variability of 47.9% (84.1% with previous treatment and 26.2% without previous treatment). The PET-defined GTVs showed an interobserver variability of 21% regardless of previous treatment. Semiautomatic segmentation did not provide satisfying results.

Conclusion

FDG-PET can distinguish vital tumor tissue and scar tissue, and therefore alters the GTV especially in patients with previous local treatment. In addition, it reduces the interobserver variability significantly compared to MRI. However, respiratory gated PET is necessary for good co-registration of PET and MRI.

Zusammenfassung

Ziel

Ziel der Studie war es, den Einfluss der 4D-[18F]Fluorodesoxglucose (FDG)-PET/CT in Kombination mit der atemgetriggerten Magnetresonanztomographie (MRT) auf die Zielvolumendefinition bei der stereotaktischen Bestrahlung von Lebermetastasen zu untersuchen.

Material und Methoden

18 Patienten wurden mit atemgetriggerter FDG-PET/CT und MRT untersucht. Die Daten beider Modalitäten wurden mit Hilfe eines rigiden Algorithmus koregistriert. Die Qualität der Koregistrierung von MRT und atemgetriggerter bzw. nichtatemgetriggerter PET wurde anhand einer Skala von 1 (sehr gut) bis 5 (mangelhaft) bewertet. Das „Gross Tumor Volumen“ (GTV) wurde anhand der CT (GTVCT), der MRT (GTVMRI) und der PET (GTVPET) bestimmt. Die auf PET und MRT basierten GTVs wurden jeweils von drei Befundern definiert. Die Interobserver-Variabilität für GTVPET und GTVMRT wurde sowohl für das gesamte Patientenkollektiv als auch separat je für die bereits vorbehandelten Patienten und für Patienten mit Ersttherapie betrachtet. Die GTVs wurden in gleicher Weise für das gesamte Kollektiv und die vorbehandelten und nicht vorbehandelten Patienten individuell verglichen. Zusätzlich wurde auf die PET-Bilder ein semiautomatischer Algorithmus zur Definition des GTV angewendet.

Ergebnisse

Die Koregistrierung zwischen MRT und nichtatemgetriggerten PET-Bildern wurde im Mittel mit 3,3 bewertet und verbesserte sich bei der Verwendung von atemgetriggerten PET-Bildern signifikant (p<0,01) auf 2,1. Das mittlere GTVCT betrug 51,5 ml, GTVMRI 51,8 ml und das mittlere GTVPET 48,1 ml. Die in den MR-Bildern definierten Zielvolumina waren im Mittel 9,9% größer als die CT-definierten. Die GTVPET waren im Mittel 13,8% größer als die GTVMRI. Der Unterschied der Zielvolumina war besonders in der Gruppe der vorbehandelten Patienten stärker ausgeprägt. Die Interobserver-Variabilität betrug bei den MRT-basierten Zielvolumina 47,9% (mit Vorbehandlung 84,1%, ohne 26,2%). Die PET-basierten GTVs zeigten eine Interobserver-Variabiliät von 21% unabhängig von einer etwaigen Therapie. Der semiautomatische Segmentierungsalgorithmus lieferte keine zufriedenstellenden Ergebnisse.

Schlussfolgerung

FDG-PET ermöglicht die Differenzierung zwischen vitalem Tumorgewebe und Narbengewebe. Dadurch wird das GTV insbesondere bei vorbehandelten Patienten beeinflusst. Zusätzlich wird verglichen mit der MRT-Bildgebung die Interobserver-Variabilität durch die PET signifikant reduziert. Für eine gute Koregistrierung zwischen PET und MRT ist allerdings eine atemgetriggerte PET-Aufnahme notwendig.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Lammering G, De Ruysscher D, Baardwijk A van et al (2010) The use of FDG-PET to target tumors by radiotherapy. Strahlenther Onkol 186:471–481

    Article  PubMed  Google Scholar 

  2. Gilbeau L, Octave-Prignot M, Loncol T et al (2001) Comparison of setup accuracy of three different thermoplastic masks for the treatment of brain and head and neck tumors. Radiother Oncol 58:155–162

    Article  PubMed  CAS  Google Scholar 

  3. Wel A van Der, Nijsten S, Hochstenbag M et al (2005) Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study. Int J Radiat Oncol Biol Phys 61:649–655

    Article  Google Scholar 

  4. Nestle U, Schaefer-Schuler A, Kremp S et al (2007) Target volume definition for 18F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 34:453–462

    Article  PubMed  Google Scholar 

  5. De Ruysscher D, Kirsch CM (2010) PET scans in radiotherapy planning of lung cancer. Radiother Oncol 96:335–338

    Article  Google Scholar 

  6. Astner ST, Dobrei-Ciuchendea M, Essler M et al (2008) Effect of 11C-methionine-positron emission tomography on gross tumor volume delineation in stereotactic radiotherapy of skull base meningiomas. Int J Radiat Oncol Biol Phys 72:1161–1167

    Article  PubMed  Google Scholar 

  7. Astner ST, Bundschuh RA, Beer AJ et al (2009) Assessment of tumor volumes in skull base glomus tumors using Gluc-Lys[(18)F]-TOCA positron emission tomography. Int J Radiat Oncol Biol Phys 73:1135–1140

    Article  PubMed  Google Scholar 

  8. Daisne JF, Duprez T, Weynand B et al (2004) Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 233:93–100

    Article  PubMed  Google Scholar 

  9. Eich HT, Muller RP, Engenhart-Cabillic R et al (2008) Involved-node radiotherapy in early-stage Hodgkin’s lymphoma. Definition and guidelines of the German Hodgkin Study Group (GHSG). Strahlenther Onkol 184:406–410

    Article  PubMed  Google Scholar 

  10. Girinsky T, Ghalibafian M, Bonniaud G et al (2007) Is FDG-PET scan in patients with early stage Hodgkin lymphoma of any value in the implementation of the involved-node radiotherapy concept and dose painting? Radiother Oncol 85:178–186

    Article  PubMed  Google Scholar 

  11. Erdi YE, Mawlawi O, Larson SM et al (1997) Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 80:2505–2509

    Article  PubMed  CAS  Google Scholar 

  12. Bayne M, Hicks RJ, Everitt S et al (2010) Reproducibility of “intelligent” contouring of gross tumor volume in non-small-cell lung cancer on PET/CT images using a standardized visual method. Int J Radiat Oncol Biol Phys 77:1151–1157

    Article  PubMed  Google Scholar 

  13. Oshiro Y, Aruga T, Tsuboi K et al (2010) Stereotactic body radiotherapy for lung tumors at the pulmonary hilum. Strahlenther Onkol 186:274–279

    Article  PubMed  Google Scholar 

  14. Holy R, Piroth M, Pinkawa M et al (2011) Stereotactic body radiation therapy (SBRT) for treatment of adrenal gland metastases from non-small cell lung cancer. Strahlenther Onkol 187:245–251

    Article  PubMed  Google Scholar 

  15. Astner ST, Theodorou M, Dobrei-Ciuchendea M et al (2010) Tumor shrinkage assessed by volumetric MRI in the long-term follow-up after stereotactic radiotherapy of meningiomas. Strahlenther Onkol 186:423–429

    Article  PubMed  Google Scholar 

  16. Pech M, Mohnike K, Wieners G et al (2008) Radiotherapy of liver metastases. Comparison of target volumes and dose-volume histograms employing CT- or MRI-based treatment planning. Strahlenther Onkol 184:256–261

    Article  PubMed  Google Scholar 

  17. Geets X, Lee JA, Bol A et al (2007) A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 34:1427–1438

    Article  PubMed  Google Scholar 

  18. Brandner ED, Wu A, Chen H et al (2006) Abdominal organ motion measured using 4D CT. Int J Radiat Oncol Biol Phys 65:554–560

    Article  PubMed  Google Scholar 

  19. Nehmeh SA, Erdi YE, Ling CC et al (2002) Effects of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 43:876–881

    PubMed  Google Scholar 

  20. Visvikis D, Barret O, Fryer TD et al (2004) Evaluation of respiratory motion effects in comparison with other parameters affecting PET image quality. IEEE Nucl Sci Symp

  21. Delso G, Ziegler S (2009) PET/MRI system design. Eur J Nucl Med Mol Imaging 36(Suppl 1):86–92

    Article  Google Scholar 

  22. Krengli M, Milia ME, Turri L et al (2010) FDG-PET/CT imaging for staging and target volume delineation in conformal radiotherapy of anal carcinoma. Radiat Oncol 5:10

    Article  PubMed  Google Scholar 

  23. Bassi MC, Turri L, Sacchetti G et al (2008) FDG-PET/CT imaging for staging and target volume delineation in preoperative conformal radiotherapy of rectal cancer. Int J Radiat Oncol Biol Phys 70:1423–1426

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.A. Bundschuh.

Additional information

The first two authors contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bundschuh, R., Andratschke, N., Dinges, J. et al. Respiratory gated [18F]FDG PET/CT for target volume delineation in stereotactic radiation treatment of liver metastases. Strahlenther Onkol 188, 592–598 (2012). https://doi.org/10.1007/s00066-012-0094-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0094-3

Keywords

Schlüsselwörter

Navigation