Skip to main content
Log in

Radiation treatment parameters for re-irradiation of malignant glioma

Behandlungsparameter für Re-Bestrahlung beim malignen Gliom

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

Most patients with malignant glioma ultimately fail locally or loco-regionally after the first treatment, with re-irradiation being a reasonable treatment option. However, only limited data are presently available allowing for a precise selection of patients suitable for re-treatment with regard to safety and efficacy.

Material and methods

Using the department database, 39 patients with a second course of radiation were identified. Doses to gross tumor volume (GTV), planning target volume (PTV), and relevant organs at risk (OARs; brainstem, optic chiasm, optic nerves, brain) were retrospectively analyzed and correlated to outcome parameters. Relevant treatment parameters including Dmax, Dmin, Dmean, and volume (ml) were obtained. Equivalent uniform dose (EUD) values were calculated for the tumor and OARs. To address the issue of radiation necrosis/leukoencephalopathy posttherapeutic MRI images were routinely examined every 3 months.

Results

Median follow-up was 147 days. The time interval between first and second irradiation was regularly greater than 6 months. Median EUDs to the OARs were 11.9 Gy (range 0.7–27.4 Gy) to the optic chiasm, 17.6 Gy (range 0.7–43.0 Gy) to the brainstem, 4.9/2.1 Gy (range 0.3–24.5 Gy) to the right/left optic nerve, and 29.4 Gy (range 25.2–32.5 Gy) to the brain. No correlation between treated volume and survival was observed. Cold spots and dose did not correlate with survival. Re-irradiated volumes were treated with on average lower doses if they were larger and vice versa.

Conclusion

In general, re-irradiation is a safe and feasible re-treatment option. No relevant toxicity was observed after re-irradiation in our patient cohort during follow-up. In this regard, this analysis provides baseline data for the selection of putative patients. EUD values are derived and may serve as reference for further studies, including intensity-modulated radiotherapy (IMRT) protocols.

Zusammenfassung

Hintergrund und Ziel

Die meisten Patienten mit einem malignen Gliom erleiden ein lokales oder lokoregionäres Rezidiv nach Erstbehandlung. Dabei stellt die Möglichkeit einer Re-Bestrahlung eine vernünftige Therapieoption dar. Allerdings liegen gegenwärtig noch keine validen Daten vor, die eine präzise Patientenselektion hinsichtlich der Behandlungseffektivität und -sicherheit erlauben.

Material und Methoden

Mit Hilfe der klinikeigenen Datenbank wurden 39 Patienten identifiziert, die eine erneute Strahlentherapie im Rezidiv erhalten hatten. Die Strahlendosen in „gross tumor volume“ (GTV), „planning target volume“ (PTV) und relevanten Risikoorganen (Hirnstamm, Chiasma opticum, Sehnerven, Gehirn) wurden retrospektiv ausgewertet und mit den Behandlungsergebnissen korreliert. Relevante Behandlungsparameter wie Dosismaxima (Dmax), -minima (Dmin), -mittelwerte (Dmean) und Volumina (ml) wurden erhoben. „Equivalent uniform dose“ (EUD)-Werte wurden für Tumor und Risikoorgane berechnet. Um eine potentielle Radionekrose adäquat zu erfassen, wurden posttherapeutisch regelmäßig alle 3 Monate MRT-Bildgebungen durchgeführt.

Ergebnisse

Das mediane Follow-Up betrug 147 Tage. Das Zeitintervall zwischen 1. und 2.  Bestrahlungsserie lag regelhaft über 6 Monaten. Die medianen EUD-Werte an den Risikoorganen betrugen am Chiasma opticum 11,9 Gy (range 0,7–27,4 Gy), 17,6 Gy (range 0,7–43,0 Gy) am Hirnstamm, am rechten bzw. linken Sehnerv 4,9 bzw. 2,1 Gy (range 0,3–24,5 Gy) und am Gehirn 29,4 Gy (range 25,2–32,5 Gy). Eine Korrelation zwischen behandeltem Volumen und Überleben wurde nicht beobachtet. Die Dosis bzw. fokale Unterdosierungen korrelierten ebenfalls nicht mit dem Überleben. Größere re-bestrahlte Volumina wurden im Durchschnitt mit niedrigeren Gesamtdosen behandelt und umgekehrt.

Schlussfolgerung

Grundsätzlich ist die Re-Bestrahlung eine sichere und durchführbare Option im Rezidiv. In der Nachbeobachtung nach erneuter Strahlentherapieserie wurde in unserem Kollektiv keine relevante Toxizität beobachtet. Dahingehend liefert die vorliegende Analyse grundlegende Daten zur Selektion potentieller Patienten. EUD-Werte wurden generiert und könnten künftig als Referenz für weitere Studien einschließlich IMRT-Behandlungsprotokollen dienen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

3D-CRT:

3D conformal radiotherapy

CNS:

central nervous system

CT:

computed tomography

Dmax, min, mean :

maximum, minimum, mean dose

DVH:

dose–volume histogram

EUD:

equivalent uniform dose

FET:

18F-fluoroethyltyrosine

FSRT:

fractionated stereotactic radiotherapy

GTV:

gross tumor volume

IMRT:

intensity-modulated radiotherapy

MG:

malignant glioma

MGMT:

O6-methylguanine-DNA methyltransferase

MRI:

magnetic resonance imaging

NTCP:

normal tissue complication probability

NTD:

normalized total dose

OAR:

organs at risk

PET:

positron emission tomography

PTV:

planning target volume

RT:

radiotherapy

SRS:

stereotactic radiosurgery

TMZ:

temozolomide

References

  1. Bashir R, Hochberg F, Oot R (1988) Regrowth patterns of glioblastoma multiforme related to planning of interstitial brachytherapy radiation fields. Neurosurgery 23:27–30

    Article  PubMed  CAS  Google Scholar 

  2. Jansen EP, Dewit LG, Herk M van, Bartelink H (2000) Target volumes in radiotherapy for high-grade malignant glioma of the brain. Radiother Oncol 56:151–156

    Article  PubMed  CAS  Google Scholar 

  3. Wallner KE, Galicich JH, Krol G et al (1989) Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 16:1405–1409

    Article  PubMed  CAS  Google Scholar 

  4. Grabenbauer GG (2010) Long-term survival of patients with glioblastoma multiforme treated with chemoradiation: correlation with MGMT promoter methylation status. Strahlenther Onkol 186:185–187

    Google Scholar 

  5. Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  PubMed  CAS  Google Scholar 

  6. Ernst-Stecken A, Ganslandt O, Lambrecht U et al (2007) Survival and quality of life after hypofractionated stereotactic radiotherapy for recurrent malignant glioma. J Neurooncol 81:287–294

    Article  PubMed  Google Scholar 

  7. Henke G, Paulsen F, Steinbach JP et al (2009) Hypofractionated reirradiation for recurrent malignant glioma. Strahlenther Onkol 185:113–119

    Article  PubMed  Google Scholar 

  8. Vordermark D, Kolbl O, Ruprecht K et al (2005) Hypofractionated stereotactic re-irradiation: treatment option in recurrent malignant glioma. BMC Cancer 5:55

    Article  PubMed  Google Scholar 

  9. Niyazi M, Siefert A, Schwarz SB et al (2011) Therapeutic options for recurrent malignant glioma. Radiother Oncol

  10. Bauman GS, Sneed PK, Wara WM et al (1996) Reirradiation of primary CNS tumors. Int J Radiat Oncol Biol Phys 36:433–441

    Article  PubMed  CAS  Google Scholar 

  11. Rimmer YL, Burnet NG (2002) Is it worth reirradiating primary brain tumours? Cambridge Experience. Br J Cancer 86:55-S

    Google Scholar 

  12. Combs SE, Gutwein S, Thilmann C et al (2005) Stereotactically guided fractionated re-irradiation in recurrent glioblastoma multiforme. J Neurooncol 74:167–171

    Article  PubMed  CAS  Google Scholar 

  13. Niyazi M, Ganswindt U, Schwarz SB et al (2010) Irradiation and bevacizumab in high-grade glioma retreatment settings. Int J Radiat Oncol Biol Phys

  14. Combs SE, Widmer V, Thilmann C et al (2005) Stereotactic radiosurgery (SRS) – treatment option for recurrent glioblastoma multiforme (GBM). Cancer 104:2168–2173

    Article  PubMed  Google Scholar 

  15. Biswas T, Okunieff P, Schell MC et al (2009) Stereotactic radiosurgery for glioblastoma: retrospective analysis. Radiat Oncol 4:11

    Article  PubMed  Google Scholar 

  16. Fuller CD, Choi M, Forthuber B et al (2007) Standard fractionation intensity modulated radiation therapy (IMRT) of primary and recurrent glioblastoma multiforme. Radiat Oncol 2:26

    Article  PubMed  Google Scholar 

  17. Ang KK, Price RE, Stephens LC et al (1993) The tolerance of primate spinal cord to re-irradiation. Int J Radiat Oncol Biol Phys 25:459–464

    Article  PubMed  CAS  Google Scholar 

  18. Combs SE, Debus J, Schulz-Ertner D (2007) Radiotherapeutic alternatives for previously irradiated recurrent gliomas. BMC Cancer 7:167

    Article  PubMed  Google Scholar 

  19. Fokas E, Wacker U, Gross MW et al (2009) Hypofractionated stereotactic reirradiation of recurrent glioblastomas: a beneficial treatment option after high-dose radiotherapy? Strahlenther Onkol 185:235–240

    Article  PubMed  Google Scholar 

  20. Leitzen C, Schild HH, Bungart B et al (2010) Prediction of clinical course of glioblastomas by MRI during radiotherapy. Strahlenther Onkol 186:681–686

    Article  PubMed  Google Scholar 

  21. Combs SE, Thilmann C, Edler L et al (2005) Efficacy of fractionated stereotactic reirradiation in recurrent gliomas: long-term results in 172 patients treated in a single institution. J Clin Oncol 23:8863–8869

    Article  PubMed  Google Scholar 

  22. Jones LC, Hoban PW (2000) Treatment plan comparison using equivalent uniform biologically effective dose (EUBED). Phys Med Biol 45:159–170

    Article  PubMed  CAS  Google Scholar 

  23. Alber M (2000) A concept for the optimization of radiotherapy. Dissertation. Universität Tübingen

  24. Alber M, Belka C (2006) A normal tissue dose response model of dynamic repair processes. Phys Med Biol 51:153–172

    Article  PubMed  Google Scholar 

  25. Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24:103–110

    Article  PubMed  CAS  Google Scholar 

  26. Wu QW, Mohan R, Niemierko A, Schmidt-Ullrich R (2002) Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. Int J Radiat Oncol Biol Phys 52:224–235

    Article  PubMed  Google Scholar 

  27. Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24:103–110

    Article  PubMed  CAS  Google Scholar 

  28. Soehn M, Yan D, Liang J et al (2007) Incidence of late rectal bleeding in high-dose conformal radiotherapy of prostate cancer using equivalent uniform dose-based and dose-volume-based normal tissue complication probability models. Int J Radiat Oncol Biol Phys 67:1066–1073

    Article  Google Scholar 

  29. Gay HA, Niemierko A (2007) A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Phys Med 23:115–125

    Article  PubMed  Google Scholar 

  30. Kehwar TS (2005) Analytical approach to estimate normal tissue complication probability using best fit of normal tissue tolerance doses into the NTCP equation of the linear quadratic model. J Cancer Res Ther 1:168–179

    Article  PubMed  CAS  Google Scholar 

  31. Mayer R, Sminia P (2008) Reirradiation tolerance of the human brain. Int J Radiat Oncol Biol Phys 70:1350–1360

    Article  PubMed  CAS  Google Scholar 

  32. Lawrence YR, Li XA, el Naqa I et al (2010) Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 76:20–27

    Article  Google Scholar 

  33. Mayo C, Martel MK, Marks LB et al (2010) Radiation dose-volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys 76:28–35

    Article  Google Scholar 

  34. Mayo C, Yorke E, Merchant TE (2010) Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys 76:36–41

    Article  Google Scholar 

  35. Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    PubMed  CAS  Google Scholar 

  36. Dolezel M, Odrazka K, Vaculikova M et al (2010) Dose escalation in prostate radiotherapy up to 82 Gy using simultaneous integrated boost: direct comparison of acute and late toxicity with 3D-CRT 74 Gy and IMRT 78 Gy. Strahlenther Onkol 186:197–202

    Article  PubMed  Google Scholar 

  37. Peponi E, Glanzmann C, Kunz G et al (2010) Simultaneous integrated boost intensity-modulated radiotherapy (SIBIMRT) in nasopharyngeal cancer. Strahlenther Onkol 186:135–142

    Article  PubMed  Google Scholar 

  38. Marsh JC, Gielda BT, Herskovic AM et al (2010) Sparing of the hippocampus and limbic circuit during whole brain radiation therapy: a dosimetric study using helical tomotherapy. J Med Imaging Radiat Oncol 54:375–382

    Article  PubMed  CAS  Google Scholar 

  39. Marsh JC, Godbole RH, Herskovic AM et al (2010) Sparing of the neural stem cell compartment during whole-brain radiation therapy: a dosimetric study using helical tomotherapy. Int J Radiat Oncol Biol Phys 78:946–954

    Article  PubMed  Google Scholar 

Download references

Authors’ contributions

UG, CB, and MN planned, coordinated, and performed the study. PL provided information on physical treatment planning. MS provided assistance on EUD theory as well as EUD calculation. MN, MS, CB, SBS, and UG prepared the manuscript. All authors read and approved the final manuscript.

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Niyazi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niyazi, M., Söhn, M., Schwarz, S. et al. Radiation treatment parameters for re-irradiation of malignant glioma. Strahlenther Onkol 188, 328–333 (2012). https://doi.org/10.1007/s00066-011-0055-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-011-0055-2

Keywords

Schlüsselwörter

Navigation