Skip to main content

Advertisement

Log in

Partial-Volume Segmentation for Dose Optimization in Whole-Breast Radiotherapy

A Comparative Dosimetric and Clinical Analysis

Partialvolumensegmentierung zur Optimierung der Dosisverteilung bei Ganzbrustbestrahlung. Eine vergleichende dosimetrische und klinische Analyse

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Purpose:

To analyze the dosimetric and clinical benefit of a forward planned technique to optimize dose distribution in whole-breast irradation (WBI) using additional partial-volume segments (PVSeg).

Patients and Methods:

In two separate treatment periods, 265 breast cancer patients received tangential-field WBI and were retrospectively analyzed. Between 02/2004 and 03/2006, 96 patients were treated with one to two additional low-weighted PVSeg to reduce dose peaks within the target volume. 169 patients treated between 01/2000 and 12/2001 before implementation of this PVSeg technique served as comparison group. Total dose was 50–50.4 Gy (single dose, 1.8–2 Gy). The planning target volume (PTV) receiving at least 95%, 105% and 110% of the reference dose (V95–110%) and frequency of moist skin desquamation during radiotherapy were compared uni- and multivariately with patient- and treatment-related variables.

Results:

The mean PTV was 1,144 ml (range, 235–2,365 ml). Moist skin desquamations developed in 16 patients (17%) with PVSeg compared to 30 patients (18%) without PVSeg (p = 0.482). In breast volumes > 1,100 ml, the corresponding figures were 19% versus 29% (p = 0.133). V105% was significantly reduced by the use of PVSeg (82 ± 51 ml vs. 143 ± 129 ml; p < 0.0001). In univariate analysis, the following variables had significant influence on the development of moist skin desquamation: V95% (p < 0.0001), V105% (p < 0.001), V110% (p = 0.012) adjuvant chemotherapy (p = 0.02), and single dose (p = 0.009). In multivariate analysis, only V95% (p = 0.002) remained significant.

Conclusion:

The use of PVSeg in WBI reduced dose peaks within the PTV while breast volumes > 1,100 ml benefited most. V95% was strongly correlated to the risk of developing moist skin desquamations.

Ziel:

Untersuchung des Nutzens einer einfachen vorwärts geplanten Bestrahlungstechnik mit Partialvolumensegmenten (PVSeg) bei der Ganzbrustbestrahlung.

Patienten und Methodik:

Es wurden 265 Brustkrebspatientinnen aus zwei Behandlungszeiträumen analysiert, die nach brusterhaltender Therapie eine Ganzbrustbestrahlung mit tangentialen Feldern erhielten. Von 02/2004 bis 03/2006 erhielten 96 Patientinnen ein bis zwei zusätzliche, niedriggewichtete PVSeg zur Reduzierung von Dosisspitzen im Zielvolumen. Als Vergleich dienten 169 Patientinnen im Zeitraum von 01/2000 bis 12/2001 vor Einführung der PVSeg-Technik. Die Gesamtdosis betrug 50–50,4 Gy (Einzeldosis: 1,8–2 Gy). Das Planungszielvolumen (PTV), welches mindestens 95%, 105% und 110% der Referenzdosis (V95–110%) erhielt, und die Häufigkeit feuchter Epitheliolysen während der Bestrahlung wurden mittels uni- und multivariater Analyse mit Patienten- und Behandlungsparametern verglichen.

Ergebnisse:

Das mittlere PTV betrug 1 144 ml (Streubreite: 235–2 365 ml). Feuchte Epitheliolysen traten bei 16 Patientinnen (17%) mit PVSeg versus 30 Patientinnen (18%) ohne PVSeg auf (p = 0,482). Bei Brustvolumina > 1 100 ml wurden feuchte Epitheliolysen mit und ohne PVSeg bei 19% versus 29% beobachtet (p = 0,133). Mit der PVSeg-Technik wurde V105% signifikant gesenkt (82 ± 51 ml vs. 143 ± 129 ml; p < 0,0001). In der univariaten Analyse beeinflussten folgende Faktoren die Entwicklung feuchter Epitheliolysen signifikant: V95 (p < 0,0001), V105% (p < 0,001), V110% (p = 0,012), eine adjuvante Chemotherapie (p = 0,02) und die Höhe der Einzeldosis (p = 0,009). In der multivariaten Analyse blieb nur V95% (p = 0,002) signifikant.

Schlussfolgerung:

Die vorgestellte PVSeg-Technik reduzierte Dosisspitzen im PTV, wobei Patientinnen mit Brustvolumina > 1 100 ml am meisten profitierten. Es konnte eine starke Korrelation zwischen V95% und dem Auftreten feuchter Epitheliolysen gefunden werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abo-Madyan Y, Polednik M, Rahn A, et al. Improving dose homogeneity in large breasts by IMRT. Efficacy and dosimetric accuracy of different techniques. Strahlenther Onkol 2008;184:86–92.

    Article  PubMed  Google Scholar 

  2. Bral S, Vinh-Hung V, Everaert H, et al. The use of molecular imaging to evaluate radiation fields in the adjuvant setting of breast cancer. Strahlenther Onkol 2008;184:100–4.

    Article  PubMed  Google Scholar 

  3. Brenner D, Shuryak I, Russo S, et al. Reducing second breast cancers: a potential role for prophylactic internal mammary node irradiation. J Clin Oncol 2007;25:4868–72.

    Article  PubMed  Google Scholar 

  4. Buchholz TA, Gurgoze E, Bice WS, et al. Dosimetric analysis of intact breast irradiation in off-axis planes. Int J Radiat Oncol Biol Phys 1997;39:109–15.

    Article  Google Scholar 

  5. Cancer Therapy Evaluation Program. Common terminology criteria for adverse events: National Cancer Institute (http://ctep.cancer.gov/forms/CTCAEv3.pdf).

  6. Chin LM, Cheng CW, Siddon RL, et al. Three dimensional photon dose distributions with and without lung corrections for tangential breast intact treatments. Int J Radiat Oncol Biol Phys 1989;17:1327–35.

    Article  CAS  PubMed  Google Scholar 

  7. Clarke M, Collins R, Darby S, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005;366:2087–106.

    Article  CAS  PubMed  Google Scholar 

  8. Das IJ, Cheng C, Fein DA, et al. Patterns of dose variability in radiation prescription of breast cancer. Radiother Oncol 1997;44:83–9.

    Article  CAS  PubMed  Google Scholar 

  9. Deshields TL, Reschke A, Walker MS, et al. Psychological status of diagnosis and patients’ ratings of cosmesis following radiation therapy for breast cancer. J Psychosoc Oncol 2007;25:103–16.

    Article  PubMed  Google Scholar 

  10. Donovan E, Bleakley N, Denholm E, et al. Randomised trial of standard 2D radiotherapy (RT) versus intensity modulated radiotherapy (IMRT) in patients prescribed breast radiotherapy. Radiother Oncol 2007;82:254–64.

    Article  PubMed  Google Scholar 

  11. Fehlauer F, Tribius S, Alberti W, et al. Late effects and cosmetic results of conventional versus hypofractionated irradiation in breast-conserving therapy. Strahlenther Onkol 2005;181:625–31.

    Article  PubMed  Google Scholar 

  12. Freedman GM, Anderson PR, Li J, et al. Intensity modulated radiation therapy (IMRT) decreases acute skin toxicity for women receiving radiation for breast cancer. Am J Clin Oncol 2006;29:66–70.

    Article  PubMed  Google Scholar 

  13. Gray JR, McCormick B, Cox L, et al. Primary breast irradiation in large breasted or heavy women: analysis of cosmetic outcome. Int J Radiat Oncol Biol Phys 1991;21:347–54.

    Article  CAS  PubMed  Google Scholar 

  14. Gulyban A, Kovacs P, Sebstyen Z, et al. Multisegmented tangential breast fields: a rational way to treat breast cancer. Strahlenther Onkol 2008;184:262–9.

    Article  PubMed  Google Scholar 

  15. Haffty B, Buchholz T, McCormick B, et al. Should IMRT be the standard of care in the conservatively managed breast cancer patient? J Clin Oncol 2008;26:2072–4.

    Article  PubMed  Google Scholar 

  16. Harsolia A, Kestin L, Grills I, et al. Intensity-modulated radiotherapy results in significant decrease in clinical toxicities compared with conventional wedge-based breast radiotherapy. Int J Radiat Oncol Biol Phys 2007;68:1375–80.

    Article  PubMed  Google Scholar 

  17. Lo Y, Yasuda G, Fitzgerald T, et al. Intensity modulation for breast treatment using static multi-leaf collimators. Int J Radiat Oncol Biol Phys 2000;46:187–94.

    Article  CAS  PubMed  Google Scholar 

  18. Ludwig V, Schwab F, Guckenberger M, et al. Comparison of wedge versus segmented techniques in whole breast irradiation. Strahlenther Onkol 2008;184:307–12.

    Article  PubMed  Google Scholar 

  19. Moody AM, Mayles WPM, Bliss JM, et al. The influence of breast size on late radiation effects and association with radiotherapy dose inhomogeneity. Radiother Oncol 1994;33:106–12.

    Article  CAS  PubMed  Google Scholar 

  20. Neal AJ, Torr M, Helver S, et al. Correlation of breast dose heterogeneity with breast size using 3D CT planning and dose-volume histograms. Radiother Oncol 1995;34:210–8.

    Article  CAS  PubMed  Google Scholar 

  21. Pignol JP, Olivotto I, Rakovitch E, et al. A multicenter randomized trial of breast intensity-modulated radiation therapy to reduce acute radiation dermatitis. J Clin Oncol 2008;26:2085–92.

    Article  PubMed  Google Scholar 

  22. Prescott RJ, Kunkler IH, Williams LJ, et al. A randomised controlled trial of postoperative radiotherapy following breast-conservative surgery in a minimum-risk older population. Health Technol Assess 2007;11:1–149.

    Article  CAS  PubMed  Google Scholar 

  23. Sautter-Bihl ML, Budach W, Dunst J, et al. DEGRO practical guidelines for radiotherapy of breast cancer. I: Breast-conserving therapy. Strahlenther Onkol 2007;183:661–6.

    Article  PubMed  Google Scholar 

  24. Solin LJ, Chu JCH, Sontag MR, et al. Three-dimensional photon treatment planning of the intact breast. Int J Radiat Oncol Biol Phys 1991;21:193–203.

    Article  CAS  PubMed  Google Scholar 

  25. START Trialists’ Group, Bentzen SM, Agrawal RK, Aird EG, et al. The UK Standardisation of Breast Radiotherapy (START) Trial A of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. Lancet Oncol 2008;9:331–41.

    Article  Google Scholar 

  26. Vicini FA, Sharpe M, Kestin L, et al: Optimizing breast cancer treatment efficacy with intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 2002;54:1336–44.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bremer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tromm, E., Meyer, A., Frühauf, J. et al. Partial-Volume Segmentation for Dose Optimization in Whole-Breast Radiotherapy. Strahlenther Onkol 186, 40–45 (2010). https://doi.org/10.1007/s00066-009-2031-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-009-2031-7

Key Words:

Schlüsselwörter:

Navigation