Skip to main content
Log in

Dosimetric Comparison of Image Guidance by Megavoltage Computed Tomography versus Bone Alignment for Prostate Cancer Radiotherapy

Vergleich der Dosisverteilung zwischen Lagerung nach Megavolt-Computertomographie und Lagerung nach knöchernen Strukturen bei Bestrahlung des Prostatakarzinoms

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Background and Purpose:

Daily image guidance in irradiation of prostate cancer can be based on simple portal images or on soft-tissue imaging. This study compares daily bone alignment with daily pretreatment megavoltage computed tomography (MVCT).

Patients and Methods:

Ten patients with a total of 356 fractions were analyzed. Before each fraction, the patient was positioned to match the prostate on pretreatment MVCT and planning CT. In seven fractions, rectum distension prevented a satisfactory match and the fraction was restarted after the patient went to the restroom. After treatment, organs were manually contoured on each daily MVCT and doses recalculated. Bone alignment was simulated by a software that matches the bones on MVCT and planning CT.

Results:

In the seven interrupted fractions, median improvement of rectum volume receiving full fraction dose was 14 cm3 between simulated treatment before and actual treatment after the patient went to the restroom. In the 349 noninterrupted fractions, the average difference of the isodose that covers 95% of the prostate between actual treatment position and simulated bone match position was < 1% and there was no significant change in the rectum volume with a fraction dose ≥ 2 Gy.

Conclusion:

Full fraction dose rectum irradiation can be avoided with daily MVCT by interruption of single fractions. There was no relevant benefit of daily MVCT in the noninterrupted fractions with the margins used in this study.

Hintergrund und Ziel:

Die tägliche bildgestützte Lagerung von Patienten mit Prostatakarzinom kann auf der Grundlage von „portal imaging“ oder Weichteilbildgebung erfolgen. In dieser Arbeit wird die tägliche Lagerung nach knöchernen Strukturen mit der täglichen Lagerung nach Megavolt-Computertomographie (MVCT) verglichen.

Patienten und Methodik:

Zehn Patienten mit insgesamt 356 Fraktionen wurden analysiert. Vor jeder Fraktion wurde die Prostata auf dem vor Bestrahlung erstellten MVCT in Deckung mit dem Planungs-CT gebracht. In sieben Fraktionen war dies bei vergrößertem Rektumdurchmesser nicht zufriedenstellend möglich. Diese Fraktionen wurden nach einem Toilettengang des Patienten erneut gestartet. Nach der Behandlung wurden die Organe auf jedem der täglichen MVCTs konturiert und die applizierte Dosis berechnet. Die knochenbasierte Lagerung wurde durch eine Software simuliert, die die Knochen auf MVCT und Planungs-CT in Deckung bringt.

Ergebnisse:

In den sieben unterbrochenen Fraktionen wurde durch Toilettengang und MVCT-Lagerung ein im Median 14 cm3 geringeres Rektumvolumen mit voller Fraktionsdosis bestrahlt (Tabellen 2 und 3). In den 349 nicht unterbrochenen Fraktionen war die durchschnittliche Differenz der Isodose mit 95%-Prostataabdeckung in der MVCT-Lagerung um < 1% besser (Abbildung 4), und es ergab sich kein signifikanter Unterschied für das Rektumvolumen, das der Fraktionsdosis ≥ 2 Gy ausgesetzt war (Abbildung 3a).

Schlussfolgerung:

Bestrahlung des Rektums mit der vollen Fraktionsdosis kann mit täglichem MVCT durch Unterbrechung einzelner Fraktionen vermieden werden. In nicht unterbrochenen Fraktionen ergibt sich durch die täglichen MVCTs kein relevanter Vorteil mit den hier verwendeten Sicherheitsabständen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artignan X, Smitsmans MH, Lebesque JV, et al. Online ultrasound image guidance for radiotherapy of prostate cancer: impact of image acquisition on prostate displacement. Int J Radiat Oncol Biol Phys 2004;59:595–601.

    PubMed  Google Scholar 

  2. Aubry JF, Beaulieu L, Girouard LM, et al. Measurements of intrafraction motion and interfraction and intrafraction rotation of prostate by three-dimensional analysis of daily portal imaging with radiopaque markers. Int J Radiat Oncol Biol Phys 2004;60:30–9.

    PubMed  Google Scholar 

  3. Balter JM, Chen GT, Pelizzari CA, et al. Online repositioning during treatment of the prostate: a study of potential limits and gains. Int J Radiat Oncol Biol Phys 1993;27:137–43.

    PubMed  CAS  Google Scholar 

  4. Brenner DJ, Hall EJ. Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys 1999;43:1095–101.

    Article  PubMed  CAS  Google Scholar 

  5. Britton KR, Takai Y, Mitsuya M, et al. Evaluation of inter- and intrafraction organ motion during intensity modulated radiation therapy (IMRT) for localized prostate cancer measured by a newly developed on-board image-guided system. Radiat Med 2005;23:14–24.

    PubMed  Google Scholar 

  6. Crevoisier R de, Tucker SL, Dong L, et al. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 2005;62:965–73.

    PubMed  Google Scholar 

  7. Crook JM, Raymond Y, Salhani D, et al. Prostate motion during standard radiotherapy as assessed by fiducial markers. Radiother Oncol 1995;37:35–42.

    Article  PubMed  CAS  Google Scholar 

  8. Dawson LA, Litzenberg DW, Brock KK, et al. A comparison of ventilatory prostate movement in four treatment positions. Int J Radiat Oncol Biol Phys 2000;48:319–23.

    PubMed  CAS  Google Scholar 

  9. Dobler B, Mai S, Ross C, et al. Evaluation of possible prostate displacement induced by pressure applied during transabdominal ultrasound image acquisition. Strahlenther Onkol 2006;182:240–6.

    Article  PubMed  Google Scholar 

  10. Elsayed H, Bölling T, Moustakis C, et al. Organ movements and dose exposures in teletherapy of prostate cancer using a rectal balloon. Strahlenther Onkol 2007;183:617–24.

    Article  PubMed  Google Scholar 

  11. Fuller CD, Thomas CR, Schwartz S, et al. Method comparison of ultrasound and kilovoltage x-ray fiducial marker imaging for prostate radiotherapy targeting. Phys Med Biol 2006;51:4981–93.

    Article  PubMed  Google Scholar 

  12. Fuss M, Cavanaugh SX, Fuss C, et al. Daily stereotactic ultrasound prostate targeting: inter-user variability. Technol Cancer Res Treat 2003;2:161–70.

    PubMed  Google Scholar 

  13. Huang E, Dong L, Chandra A, et al. Intrafraction prostate motion during IMRT for prostate cancer. Int J Radiat Oncol Biol Phys 2002;53:261–8.

    Article  PubMed  Google Scholar 

  14. Huang EH, Pollack A, Levy L, et al. Late rectal toxicity: dose-volume effects of conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2002;54:1314–21.

    PubMed  Google Scholar 

  15. Jereczek-Fossa BA, Cattani F, Garibaldi C, et al. Transabdominal ultrasonography, computed tomography and electronic portal imaging for 3-dimensional conformal radiotherapy for prostate cancer. Strahlenther Onkol 2007;183:610–6.

    Article  PubMed  Google Scholar 

  16. Junius S, Haustermans K, Bussels B, et al. Hypofractionated intensity modulated irradiation for localized prostate cancer, results from a phase I/II feasibility study. Radiat Oncol 2007;2:29.

    Article  PubMed  Google Scholar 

  17. Kupelian PA, Reddy CA, Carlson TP, et al. Dose/volume relationship of late rectal bleeding after external beam radiotherapy for localized prostate cancer: absolute or relative rectal volume? Cancer J 2002;8:62–6.

    Article  PubMed  Google Scholar 

  18. Kupelian PA, Reddy CA, Klein EA, et al. Short-course intensity-modulated radiotherapy (70 GY at 2.5 GY per fraction) for localized prostate cancer: preliminary results on late toxicity and quality of life. Int J Radiat Oncol Biol Phys 2001;51:988–93.

    PubMed  CAS  Google Scholar 

  19. Langen KM, Meeks SL, Poole DO, et al. The use of megavoltage CT (MVCT) images for dose recomputations. Phys Med Biol 2005;50:4259–76.

    Article  PubMed  CAS  Google Scholar 

  20. Lattanzi J, McNeeley S, Pinover W, et al. Comparison of daily CT localization to a daily ultrasound-based system in prostate cancer. Int J Radiat Oncol Biol Phys 1999;43:719–25.

    PubMed  CAS  Google Scholar 

  21. Lin EN van, van der Vight LP, Witjes JA, et al. The effect of an endorectal balloon and off-line correction on the interfraction systematic and random prostate position variations: a comparative study. Int J Radiat Oncol Biol Phys 2005;61:278–88.

    PubMed  Google Scholar 

  22. Litzenberg DW, Balter JM, Lam KL, et al. Retrospective analysis of prostate cancer patients with implanted gold markers using off-line and adaptive therapy protocols. Int J Radiat Oncol Biol Phys 2005;63:123–33.

    PubMed  Google Scholar 

  23. Livsey JE, Cowan RA, Wylie JP, et al. Hypofractionated conformal radiotherapy in carcinoma of the prostate: five-year outcome analysis. Int J Radiat Oncol Biol Phys 2003;57:1254–9.

    PubMed  Google Scholar 

  24. Mah D, Freedman G, Milestone B, et al. Measurement of intrafractional prostate motion using magnetic resonance imaging. Int J Radiat Oncol Biol Phys 2002;54:568–75.

    PubMed  Google Scholar 

  25. Meeks SL, Harmon JF Jr, Langen KM, et al. Performance characterization of megavoltage computed tomography imaging on a helical tomotherapy unit. Med Phys 2005;32:2673–81.

    Article  PubMed  Google Scholar 

  26. Morr J, DiPetrillo T, Tsai JS, et al. Implementation and utility of a daily ultrasound-based localization system with intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2002;53:1124–9.

    Article  PubMed  Google Scholar 

  27. Moseley DJ, White EA, Wiltshire KL, et al. Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate. Int J Radiat Oncol Biol Phys 2007;67:942–53.

    PubMed  Google Scholar 

  28. Nuver TT, Hoogeman MS, Remeijer P, et al. An adaptive off-line procedure for radiotherapy of prostate cancer. Int J Radiat Oncol Biol Phys 2007;67:1559–67.

    PubMed  Google Scholar 

  29. O’Daniel JC, Dong L, Zhang L, et al. Dosimetric comparison of four target alignment methods for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 2006;66:883–91.

    PubMed  Google Scholar 

  30. Orton NP, Tomé WA. The impact of daily shifts on prostate IMRT dose distributions. Med Phys 2004;31:2845–8.

    Article  PubMed  Google Scholar 

  31. Pollack A, Zagars GK, Starkschall G, et al. Prostate cancer radiation dose response: results of the M.D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 2002;53:1097–105.

    Article  PubMed  Google Scholar 

  32. Remeijer P, Geerlof E, Ploeger L, et al. 3-D portal image analysis in clinical practice: an evaluation of 2-D and 3-D analysis techniques as applied to 30 prostate cancer patients. Int J Radiat Oncol Biol Phys 2000;46:1281–90.

    PubMed  CAS  Google Scholar 

  33. Roeske JC, Forman JD, Mesina CF, et al. Evaluation of changes in the size and location of the prostate, seminal vesicles, bladder, and rectum during a course of external beam radiation therapy. Int J Radiat Oncol Biol Phys 1995;33:1321–9.

    PubMed  CAS  Google Scholar 

  34. Serago CF, Chungbin SJ, Buskirk SJ, et al. Initial experience with ultrasound localization for positioning prostate cancer patients for external beam radiotherapy. Int J Radiat Oncol Biol Phys 2002;53:1130–8.

    Article  PubMed  Google Scholar 

  35. Song WY, Chiu B, Bauman GS, et al. Prostate contouring uncertainty in megavoltage computed tomography images acquired with a helical tomotherapy unit during image-guided radiation therapy. Int J Radiat Oncol Biol Phys 2006;65:595–607.

    PubMed  Google Scholar 

  36. Sterzing F, Schubert K, Sroka-Perez G, et al. Helical tomotherapy. Experiences of the first 150 patients in Heidelberg. Strahlenther Onkol 2008;184:8–14.

    Article  PubMed  Google Scholar 

  37. Wang Z, Rajagopalan B, Malhotra HK, et al. The effect of positional realignment on dose delivery to the prostate and organs-at-risk for 3DCRT. Med Dosim 2007;32:1–6.

    Article  PubMed  CAS  Google Scholar 

  38. Wertz H, Lohr F, Dobler B, et al. Dosimetric consequences of a translational isocenter correction based on image guidance for intensity modulated radiotherapy (IMRT) of the prostate. Phys Med Biol 2007;52:5655–65.

    Article  PubMed  CAS  Google Scholar 

  39. Wertz H, Lohr F, Dobler B, et al. Dosimetric impact of image-guided translational isocenter correction for 3-D conformal radiotherapy of the prostate. Strahlenther Onkol 2007;183:203–10.

    Article  PubMed  Google Scholar 

  40. Willoughby TR, Kupelian PA, Pouliot J, et al. Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys 2006;65:528–34.

    PubMed  Google Scholar 

  41. Wong JR, Grimm L, Uematsu M, et al. Image-guided radiotherapy for prostate cancer by CT-linear accelerator combination: prostate movements and dosimetric considerations. Int J Radiat Oncol Biol Phys 2005;61:561–9.

    PubMed  Google Scholar 

  42. Wu J, Haycocks T, Alasti H, et al. Positioning errors and prostate motion during conformal prostate radiotherapy using on-line isocentre set-up verification and implanted prostate markers. Radiother Oncol 2001;61:127–33.

    Article  PubMed  CAS  Google Scholar 

  43. Wu Q, Ivaldi G, Liang J, et al. Geometric and dosimetric evaluations of an online image-guidance strategy for 3D-CRT of prostate cancer. Int J Radiat Oncol Biol Phys 2006;64:1596–609.

    PubMed  Google Scholar 

  44. Yeoh EE, Holloway RH, Fraser RJ, et al. Hypofractionated versus conventionally fractionated radiation therapy for prostate carcinoma: updated results of a phase III randomized trial. Int J Radiat Oncol Biol Phys 2006;66:1072–83.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Sterzing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalz, J., Sterzing, F., Schubert, K. et al. Dosimetric Comparison of Image Guidance by Megavoltage Computed Tomography versus Bone Alignment for Prostate Cancer Radiotherapy. Strahlenther Onkol 185, 241–247 (2009). https://doi.org/10.1007/s00066-009-1913-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-009-1913-z

Key Words:

Schlüsselwörter:

Navigation