Skip to main content
Log in

Pharmakokinetik und Pharmakodynamik von Antibiotika in der Intensivmedizin

Pharmacokinetics and pharmacodynamics of antibiotics in intensive care

  • Übersichten
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Zusammenfassung

Die optimale Dosierung von Antibiotika ist seit ihrer Einführung unklar geblieben. In den letzten 20 Jahren wurden 3 Pharmakokinetik(PK)-Pharmakodynamik(PD)-Indizes etabliert, die von Messungen der Konzentration des Antibiotikums im Plasma und der mittleren Hemmkonzentration (MHK) des die Infektion verursachenden Keims ausgehen. Für β‑Laktame gibt es Hinweise, dass deren Wirksamkeit von der Zeit abhängt, in der die Plasmakonzentration höher ist als die MHK. Bei Aminoglykosiden soll die Wirkung vom Verhältnis aus der maximal im Plasma erreichbaren Konzentration zur MHK abhängig sein. Für Vancomycin zeigen Studien, dass der Quotient aus der Fläche unter der Plasmaspiegelkurve (AUC) und der MHK mit der Wirksamkeit verbunden sein könnte. Für die Behandlung Schwerstkranker können diese PK-/PD-Parameter nur zur Orientierung dienen. Es fehlen nach wie vor Ergebnisse aus überzeugenden klinischen Studien an ausreichend großen Kollektiven von Schwerstkranken, die eine Vorhersage der Wirksamkeit erlauben. In der Praxis ist es deshalb schwer, ohne Orientierung an den Plasmaspiegeln eine rationale Therapie durchzuführen. Moderne Verfahren zur Analytik von allen derzeit verfügbaren Antibiotika im Plasma und die perfekte Logistik der Probenversendung erlauben es, auch kleineren Kliniken ohne hochspezialisiertes Massenspektroskopielabor ein therapeutisches Drugmonitoring (TDM) von Antibiotika durchzuführen. Vorschläge, wie Kliniken ein effizientes und den Betrieb einer Intensivstation nicht störendes TDM einführen können, werden gegeben. Auch zentrale TDM-Modelle, wie es etwa im Paul-Ehrlich-Antibiotika-Konzentrationsmessung(PEAK)-Projekt, das zu einer Vergleichbarkeit der Plasmakonzentrationen zwischen verschiedenen Zentren führen soll, entwickelt wird, werden vorgestellt.

Abstract

Optimized dosage regimens of antibiotics have remained obscure since their introduction. During the last two decades pharmacokinetic(PK)-pharmacodynamic(PD) relationships, originally established in animal experiments, have been increasingly used in patients. The action of betalactams is believed to be governed by the time the plasma concentration is above the minimum inhibitory concentration (MIC). Aminoglycosides act as planned when the peak concentration is a multiple of the MIC and vancomycin seems to work best when the area under the plasma vs. time curve (AUC) to MIC has a certain ratio. Clinicians should be aware that these relationships can only be an indication in which direction dosing should go. Larger studies with sufficiently high numbers of patients and particularly severely sick patients are needed to prove the concepts. In times where all antibiotics can be measured with new technologies, the introduction of therapeutic drug monitoring (TDM) is suggested for ICUs (Intensive Care Unit). The idea of a central lab for TDM of antibiotics such as PEAK (Paul Ehrlich Antibiotika Konzentrationsmessung) is supported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Allard S, Kinzig M, Boivin G et al (1993) Intravenous ciprofloxacin disposition in obesity. Clin Pharmacol Ther 54:368–373

    Article  CAS  PubMed  Google Scholar 

  2. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(suppl 1):5–16

    Article  CAS  PubMed  Google Scholar 

  3. Bourget P, Lesne-Hulin A, Reveille R le et al (1996) Clinical pharmacokinetics of piperacillin-tazobactam combination in patients with major burns and signs of infection. Antimicrob Agents Chemother 40:139–145

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bulitta JB, Duffull SB, Kinzig-Schippers M et al (2007) Systematic comparison of the population pharmacokinetics and pharmacodynamics of piperacillin in cystic fibrosis patients and healthy volunteers. Antimicrob Agents Chemother 51:2497–2507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bulitta JB, Kinzig M, Jakob V et al (2010) Nonlinear pharmacokinetics of piperacillin in healthy volunteers–implications for optimal dosage regimens. Br J Clin Pharmacol 70:682–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bulitta JB, Landersdorfer CB, Hüttner SJ et al (2010) Population pharmacokinetic comparison and pharmacodynamics breakpoints of ceftazidime in cystic fibrosis patients and healthy volunteers. Antimicrob Agents Chemother 54:1275–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carlier M, Stove V, Wallis SC et al (2015) Assays for therapeutic drug monitoring of β‑lactam antibiotics: a structured review. Int J Antimicrob Agents 46:367–375

    Article  CAS  PubMed  Google Scholar 

  8. Cheung WK, Greene DS, Kuye O et al (1989) Pharmacokinetics of YTR830H and piperacillin after intravenous coadministration. J Chemother 1:507–508

    CAS  PubMed  Google Scholar 

  9. Craig WA, Ebert SC (1992) Continuous infusion of beta-lactam antibiotics. Antimicrob Agents Chemother 36:2577–2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Craig WA (2003) Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am 17:479–501

    Article  PubMed  Google Scholar 

  11. Craig WA (2014) Are blood concentrations enough for establishing pharmacokinetic/pharmacodynamic relationships? Clin Infect Dis 58:1084–1085

    Article  PubMed  Google Scholar 

  12. Dams R, Huestis MA, Lambert WE et al (2003) Matrix effect in bio-analysis of illicit drugs with LC-MS/MS: influence of ionization type, sample preparation, and biofluid. J Am Soc Mass Spectrom 14:1290–1294

    Article  CAS  PubMed  Google Scholar 

  13. Schepper PJ de, Tjandramaga TB, Mullie A et al (1982) Comparative pharmacokinetics of piperacillin in normals and in patients with renal failure. J Antimicrob Chemother 9(Suppl B):49–57

    Article  PubMed  Google Scholar 

  14. Dost FH (1953) Der Blutspiegel – Kinetik der Konzentrationsabläufe in der Kreislaufflüssigkeit. Thieme, Leipzig

    Google Scholar 

  15. Drusano GL, Lodise TP (2013) Saving lives with optimal antimicrobial chemotherapy. Clin Infect Dis 56:245–247

    Article  CAS  PubMed  Google Scholar 

  16. Ehrlich P, persönliche Notiz (von Paul Ehrlich „Block“ genannt) im Rockefeller Archive Center (RAC) in Sleepy Hollow

  17. Ehrlich P (1881) Ueber das Methylenblau und seine klinisch-bakterioskopische Verwerthung. Z Klin Med 2:710–713

    Google Scholar 

  18. Ehrlich P (1956) Das Sauerstoff-Bedürfnis des Organismus. Eine farbenanalytische Studie. In: Paul Ehrlich gesammelte Werke Band I. Springer, Berlin Heidelberg, S 364–432 (ursprünglich erschienen bei Hirschwald, Berlin 1885)

    Google Scholar 

  19. Ehrlich P, Guttmann P (1891) Ueber die Wirkung des Methylenblau bei Malaria. Berl Klin Wochenschr 28:953–995

    Google Scholar 

  20. Ehrlich P (1911) Ueber Salvarsan. Munch Med Wochenschr 58:2481–2486

    Google Scholar 

  21. Elbers PW, Girbes A, Malbrain ML et al (2015) Right dose, right now: using big data to optimize antibiotic dosing in the critically ill. Anaesthesiol Intensive Ther 47:457–463

    Article  PubMed  Google Scholar 

  22. Furey A, Moriarty M, Bane V et al (2013) Ion suppression; a critical review on causes, evaluation, prevention and applications. Talanta 115:104–122

    Article  CAS  PubMed  Google Scholar 

  23. Goldman EE (1913) Vitalfärbung am Zentralnervensystem. Abhandlungen der Königlich Preussischen Akademie der Wissenschaften / Physikalisch-Mathematische Klasse 1:1–13

    Google Scholar 

  24. Brunton LL, Chabner BA, Knollman BC (2011) Goodman‘ & Gilman’s the pharmacological basis of therapeutics, 12. Aufl. Mac Graw Hill Medical, New York

    Google Scholar 

  25. Kinzig M, Sörgel F, Brismar B et al (1992) Pharmacokinetics and tissue penetration of tazobactam and piperacillin in patients undergoing colorectal surgery. Antimicrob Agents Chemother 36:1997–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krueger WA, Bulitta J, Kinzig-Schippers M et al (2005) Evaluation by Monte Carlo simulation of the pharmacokinetics of two doses of meropenem administered intermittently or as a continuous infusion in healthy volunteers. Antimicrob Agents Chemother 49:1881–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Landersdorfer CB, Kirkpatrick CM, Kinzig M et al (2008) Inhibition of flucloxacillin tubular renal secretion by piperacillin. Br J Clin Pharmacol 66:648–659

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Landersdorfer CB, Bulitta JB, Kinzig M et al (2009) Penetration of antibacterials into bone: pharmacokinetic, pharmacodynamic and bioanalyticalconsiderations. Clin Pharmacokinet 48:89–124

    Article  CAS  PubMed  Google Scholar 

  29. Landersdorfer CB, Kirkpatrick CM, Kinzig M et al (2010) Competitive inhibition of renal tubular secretion of ciprofloxacin and metabolite by probenecid. Br J Clin Pharmacol 69:167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Landersdorfer CB, Bulitta JB, Kirkpatrick CM et al (2012) Population pharmacokinetics of piperacillin at two dose levels: influence of nonlinear pharmacokinetics on the pharmacodynamic profile. Antimicrob Agents Chemother 56:5715–5723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee LS, Kinzig-Schippers M, Nafziger AN et al (2010) Comparison of 30-min and 3‑h infusion regimens for imipenem/cilastatin and for meropenem evaluated by Monte Carlo simulation. Diagn Microbiol Infect Dis 68:251–258

    Article  CAS  PubMed  Google Scholar 

  32. Leung KS, Fong BM (2014) LC-MS/MS in the routine clinical laboratory: has its time come? Anal Bioanal Chem 406:2289–2301

    Article  CAS  PubMed  Google Scholar 

  33. Lodise TP, Nau R, Kinzig M et al (2007) Pharmacodynamics of ceftazidime and meropenem in cerebrospinal fluid: results of population pharmacokinetic modelling and Monte Carlo simulation. J Antimicrob Chemother 60:1038–1044

    Article  CAS  PubMed  Google Scholar 

  34. Lodise TP, Drusano GL, Zasowski E et al (2014) Vancomycin exposure in patients with methicillin-resistant staphylococcus aureus bloodstream infections: how much is enough? Clin Infect Dis 59:666–675

    Article  CAS  PubMed  Google Scholar 

  35. Mouton JW, Ambrose PG, Canton R et al (2011) Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective. Drug Resist Updat 14:107–117

    Article  CAS  PubMed  Google Scholar 

  36. Muller AE, Theuretzbacher U, Mouton JW (2015) Use of old antibiotics now and in the future from a pharmacokinetic/pharmacodynamic perspective. Clin Microbiol Infect 21:881–885

    Article  CAS  PubMed  Google Scholar 

  37. Nau R, Sörgel F, Eiffert H (2010) Penetration of drugs through theblood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev 23:858–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rees VE, Bulitta JB, Nation RL et al (2015) Shape does matter: short high-concentration exposure minimizes resistance emergence for fluoroquinolones in pseudomonas aeruginosa. J Antimicrob Chemother 70:818–826

    Article  CAS  PubMed  Google Scholar 

  39. Roberts JA, Abdul-Aziz MH, Lipman J et al (2014) Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis 14:498–509

    Article  PubMed  PubMed Central  Google Scholar 

  40. Roberts JA, Abdul-Aziz MH, Davis JS et al (2016) Continuous versus intermittent beta-lactam infusion in severe sepsis: a meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med. doi:10.1164/rccm.201601-0024OC

  41. Rodloff A, Bauer T, Ewig S et al (2008) Sensibel, intermediär und resistent – Wirkintensität von Antibiotika. Dtsch Arztebl 105:657–662

    Google Scholar 

  42. Sakka SG, Glauner AK, Bulitta JB et al (2007) Population pharmacokinetics and pharmacodynamics of continuous versus short-term infusion of imipenem-cilastatin in critically ill patients in a randomized, controlled trial. Antimicrob Agents Chemother 51:3304–3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Smits A, Roberts JA, Vella-Brincat JW et al (2014) Cefazolin plasma protein binding in different human populations: more than cefazolin-albumin interaction. Int J Antimicrob Agents 43:199–200

    Article  CAS  PubMed  Google Scholar 

  44. Sörgel F, Stephan U, Wiesemann HG et al (1987) High dose treatment with antibiotics in cystic fibrosis-a reappraisal with special reference to the pharmacokinetics of beta-lactams and new fluoroquinolones in adult CF-patients. Infection 15:385–396

    Article  PubMed  Google Scholar 

  45. Sörgel F, Kinzig M (1994) Pharmacokinetic characteristics of piperacillin/tazobactam. Intensive Care Med 20:S14–S20

    Article  PubMed  Google Scholar 

  46. Sörgel F (2003) Warum Ikarus abstürzte und PK/PD doch ganz schön sexy ist: Überlegungen zur „modernen“ Antibiotika-Therapie. Chemother J 3:65–70

    Google Scholar 

  47. Sörgel F, Bulitta J, Landersdorfer C (2006) What we know and what we want to know about beta-lactams. Pharmacokinetics and pharmacodynamics of beta lactams. Pharm Unserer Zeit 35:438–451

    Article  PubMed  Google Scholar 

  48. Theuretzbacher U, Ambrose PG, MacGowan AP et al (2015) In memoriam: William A. Craig. Antimicrob Agents Chemother 59:2971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tjandramaga TB, Mullie A, Verbesselt R et al (1978) Piperacillin: human pharmacokinetics after intravenous and Intramuscular administration. Antimicrob Agents Chemother 14:829–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Trufelli H, Palma P, Famiglini G et al (2011) An overview of matrix effects in liquid chromatography-mass spectrometry. Mass Spectrom Rev 30:491–509

    Article  CAS  PubMed  Google Scholar 

  51. Van Eeckhaut A, Lanckmans K, Sarre S et al (2009) Validation of bioanalytical LC-MS/MS assays: evaluation of matrix effects. J Chromatogr B Analyt Technol Biomed Life Sci 877:2198–2207

    Article  PubMed  Google Scholar 

  52. Welling PG, Craig WA, Bundtzen RW (1983) Pharmacokinetics of piperacillin in subjects with various degrees of renal function. Antimicrob Agents Chemother 23:881–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wise R, Logan M, Cooper M et al (1991) Pharmacokinetics and tissue penetration of tazobactam administered alone and with piperacillin. Antimicrob Agents Chemother 35:1081–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wong G, Briscoe S, Adnan S et al (2013) Protein binding of β‑lactam antibiotics in critically ill patients: can we successfully predict unbound concentrations? Antimicrob Agents Chemother 57:6165–6170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wong G, Sime FB, Lipman J et al (2014) How do we use therapeutic drug monitoring to improve outcomes from severe infections in critically ill patients? BMC Infect Dis 14:288

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wong SL, Sörgel F, Kinzig M et al (2009) Lack of pharmacokinetic drug interactions following concomitant administration of telavancin with aztreonam or piperacillin/tazobactam in healthy participants. J Clin Pharmacol 49:816–823

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sörgel.

Ethics declarations

Interessenkonflikt

F. Sörgel, R. Höhl, R. Glaser, C. Stelzer, M. Munz, M. Vormittag, M. Kinzig, J. Bulitta, C. Landersdorfer, A. Junger, M. Christ, M. Wilhelm und U. Holzgrabe geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

K.-F. Bodmann, Eberswalde

Artikel anlässlich des 75. Jahrestags der Erstanwendung von Penicillin an dem Patienten Albert Alexander am 12. Februar 1941 im Krankenhaus der Dunn School/Oxford (England).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sörgel, F., Höhl, R., Glaser, R. et al. Pharmakokinetik und Pharmakodynamik von Antibiotika in der Intensivmedizin. Med Klin Intensivmed Notfmed 112, 11–23 (2017). https://doi.org/10.1007/s00063-016-0185-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-016-0185-5

Schlüsselwörter

Keywords

Navigation