Skip to main content
Log in

Functional Connectivity Alterations in Neuromyelitis Optica Spectrum Disorder

Correlation with Disease Duration and Cognitive Impairment

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate resting state functional connectivity alterations within the main brain networks in neuromyelitis optica spectrum disorder (NMOSD) and their associations with disease duration, disability and cognitive dysfunction progression.

Methods

Resting state functional magnetic resonance imaging (rs-fMRI), clinical and neuropsychological evaluations were obtained from 41 NMOSD patients and 41 healthy controls. Seed-voxel functional connectivity was analyzed in seven major hubs, including the default mode network, dorsal attention network, visual network, sensorimotor network, cerebellar network, thalamic network and reward-emotion network. Abnormalities of functional connectivity and correlations with disease duration, scores of the expanded disability status scale (EDSS), mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA) were further explored.

Results

Compared with healthy controls, NMOSD patients showed increased functional connectivity in the default mode network, dorsal attention network and thalamic network, while decreased in the visual network and cerebellum networks. At the regional level, increased functional connectivity involved the right superior temporal gyrus, left fusiform gyrus, left inferior parietal lobule, bilateral middle frontal gyrus and right precuneus, whereas functional connectivity was decreased in the right parahippocampal gyrus and left precuneus. Functional connectivity reduction in the right parahippocampal gyrus positively correlated with disease duration (r = 0.488, p = 0.001) and negatively correlated with MoCA scores (r = −0.330, p = 0.035).

Conclusion

The study demonstrated functional alterations in the rs-fMRI of NMOSD, which provide a novel insight into the large-scale selective functional reorganization and could be useful to reveal the characteristics of the physiological mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6:805–15.

    Article  CAS  Google Scholar 

  2. Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, de Seze J, Fujihara K, Greenberg B, Jacob A, Jarius S, Lana-Peixoto M, Levy M, Simon JH, Tenembaum S, Traboulsee AL, Waters P, Wellik KE, Weinshenker BG. International Panel for NMO Diagnosis. International consensus diagnostic criteria for neuromyelitis optica spectrum disorderss. Neurology. 2015;85:177–89.

    Article  Google Scholar 

  3. Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM, Trebst C, Weinshenker B, Wingerchuk D, Parisi JE, Lassmann H. A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain. 2002;125:1450–61.

    Article  Google Scholar 

  4. Roemer SF, Parisi JE, Lennon VA, Benarroch EE, Lassmann H, Bruck W, Mandler RN, Weinshenker BG, Pittock SJ, Wingerchuk DM, Lucchinetti CF. Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain. 2007;130:1194–205.

    Article  Google Scholar 

  5. Kim HJ, Paul F, Lana-Peixoto MA, Tenembaum S, Asgari N, Palace J, Klawiter EC, Sato DK, de Seze J, Wuerfel J, Banwell BL, Villoslada P, Saiz A, Fujihara K, Kim SH. Guthy-jackson charitable foundation NMO international clinical consortium & Biorepository. MRI characteristics of neuromyelitis optica spectrum disorders: an international update. Neurology. 2015;84:1165–73.

    Article  Google Scholar 

  6. Zhang N, Li YJ, Fu Y, Shao JH, Luo LL, Yang L, Shi FD, Liu Y. Cognitive impairment in Chinese neuromyelitis optica. Mult Scler J. 2015;21:1839–46.

    Article  Google Scholar 

  7. Cai H, Zhu J, Zhang N, Wang Q, Zhang C, Yang C, Sun J, Sun X, Yang L, Yu C. Subregional structural and connectivity damage in the visual cortex in neuromyelitis optica. Sci Rep. 2017;7:41914.

    Article  CAS  Google Scholar 

  8. Rocca MA, Agosta F, Mezzapesa DM, Falini A, Martinelli V, Salvi F, Bergamaschi R, Scotti G, Comi G, Filippi M. A functional MRI study of movement-associated cortical changes in patients with Devic’s neuromyelitis optica. Neuroimage. 2004;21:1061–8.

    Article  CAS  Google Scholar 

  9. Uddin LQ, Supekar K, Menon V. Typical and atypical development of functional human brain networks: insights from resting-state FMRI. Front Syst Neurosci. 2010;4:21.

    PubMed  PubMed Central  Google Scholar 

  10. Finke C, Zimmermann H, Pache F, Oertel FC, Chavarro VS, Kramarenko Y, Bellmann-Strobl J, Ruprecht K, Brandt AU, Paul F. Association of visual impairment in Neuromyelitis Optica spectrum disorders with visual network reorganization. Jama Neurol. 2018;75:296–303.

    Article  Google Scholar 

  11. Chanson JB, Alame M, Collongues N, Blanc F, Fleury M, Rudolf G, de Seze J, Vincent T. Evaluation of clinical interest of anti-aquaporin-4 autoantibody followup in neuromyelitis optica. Clin Dev Immunol. 2013;2013:146219.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lu J, Li D, Li F, Zhou A, Wang F, Zuo X, Jia XF, Song H, Jia J. Montreal cognitive assessment in detecting cognitive impairment in Chinese elderly individuals: a population-based study. J Geriatr Psychiatry Neurol. 2011;24:184–90.

    Article  Google Scholar 

  13. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–9.

    Article  Google Scholar 

  14. Chao-Gan Y, Yu-Feng Z. DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci. 2010;4:13.

    PubMed  PubMed Central  Google Scholar 

  15. Yan CG, Cheung B, Kelly C, Colcombe S, Craddock RC, Di Martino A, Li Q, Zuo XN, Castellanos FX, Milham MP. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage. 2013;76:183–201.

    Article  Google Scholar 

  16. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA. 2006;103:13848–53.

    Article  CAS  Google Scholar 

  17. Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M. Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA. 2007;104:13170–5.

    Article  CAS  Google Scholar 

  18. Tomasi D, Volkow ND. Association between functional connectivity hubs and brain networks. Cereb Cortex. 2011;21:2003–13.

    Article  Google Scholar 

  19. Wang D, Qin W, Liu Y, Zhang Y, Jiang T, Yu C. Altered resting-state network connectivity in congenital blind. Hum Brain Mapp. 2014;35:2573–81.

    Article  Google Scholar 

  20. Liu Y, Liang P, Duan Y, Jia X, Wang F, Yu C, Qin W, Dong H, Ye J, Li K. Abnormal baseline brain activity in patients with neuromyelitis optica: a resting-state fMRI study. Eur J Radiol. 2011;80:407–11.

    Article  Google Scholar 

  21. Sorg C, Göttler J, Zimmer C. Imaging Neurodegeneration: steps toward brain network-based Pathophysiology and its potential for multi-modal imaging diagnostics. Clin Neuroradiol. 2015;25 Suppl 2:177–81.

    Article  Google Scholar 

  22. Weidauer S, Nichtweiss M, Hattingen E. Differential diagnosis of white matter lesions: nonvascular causes—part II. Clin Neuroradiol. 2014;24:93–110.

    Article  CAS  Google Scholar 

  23. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.

    Article  Google Scholar 

  24. Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014;137:12–32.

    Article  Google Scholar 

  25. Gusnard DA, Raichle ME, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci. 2001;2:685–94.

    Article  CAS  Google Scholar 

  26. Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, McGuire P, Bullmore ET. The hubs of the human connectome are generally implicated in the anatomy of brain disorderss. Brain. 2014;137:2382–95.

    Article  Google Scholar 

  27. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3:201–15.

    Article  CAS  Google Scholar 

  28. Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: from environment to theory of mind. Neuron. 2008;58:306–24.

    Article  CAS  Google Scholar 

  29. Rocca MA, Savoldi F, Valsasina P, Radaelli M, Preziosa P, Comi G, Falini A, Filippi M. Cross-modal plasticity among sensory networks in neuromyelitis optica spectrum disorders. Mult Scler. 2019;25:968–79.

    Article  Google Scholar 

  30. Lopes FC, Alves-Leon SV, Godoy JM, de Souza Batista Scherpenhuijzen S, Fezer L, Gasparetto EL. Optic neuritis and the visual pathway: evaluation of Neuromyelitis Optica spectrum by resting-state fMRI and diffusion tensor MRI. J Neuroimaging. 2015;25:807–12.

    Article  Google Scholar 

  31. Allen G, McColl R, Barnard H, Ringe WK, Fleckenstein J, Cullum CM. Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity. Neuroimage. 2005;28:39–48.

    Article  Google Scholar 

  32. O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20:953–65.

    Article  Google Scholar 

  33. Sacchetti B, Scelfo B, Strata P. Cerebellum and emotional behavior. Neuroscience. 2009;162:756–62.

    Article  CAS  Google Scholar 

  34. Koziol LF, Budding DE, Chidekel D. From movement to thought: executive function, embodied cognition, and the cerebellum. Cerebellum. 2012;11:505–25.

    Article  Google Scholar 

  35. Caligiore D, Pezzulo G, Miall RC, Baldassarre G. The contribution of brain sub-cortical loops in the expression and acquisition of action understanding abilities. Neurosci Biobehav Rev. 2013;37:2504–15.

    Article  Google Scholar 

  36. Dukart J, Mueller K, Horstmann A, Vogt B, Frisch S, Barthel H, Becker G, Möller HE, Villringer A, Sabri O, Schroeter ML. Differential effects of global and cerebellar normalization on detection and differentiation of dementia in FDG-PET studies. Neuroimage. 2010;49:1490–5.

    Article  Google Scholar 

  37. Liu Y, Duan Y, Huang J, Ren Z, Ye J, Dong H, Shi FD, Barkhof F, Vrenken H, Wattjes MP, Wang J, Li K. Multimodal quantitative MR imaging of the thalamus in multiple sclerosis and Neuromyelitis Optica. Radiology. 2015;277:784–92.

    Article  Google Scholar 

  38. De Giglio L, Tona F, De Luca F, Petsas N, Prosperini L, Bianchi V, Pozzilli C, Pantano P. Multiple sclerosis: changes in thalamic resting-state functional Connectivity induced by a home-based cognitive rehabilitation program. Radiology. 2016;280:202–11.

    Article  Google Scholar 

  39. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.

    Article  CAS  Google Scholar 

  40. Matthews L, Marasco R, Jenkinson M, Küker W, Luppe S, Leite MI, Giorgio A, De Stefano N, Robertson N, Johansen-Berg H, Evangelou N, Palace J. Distinction of seropositive NMO spectrum disorders and MS brain lesion distribution. Neurology. 2013;80:1330–7.

    Article  Google Scholar 

  41. Kim SH, Kwak K, Jeong IH, Hyun JW, Jo HJ, Joung A, Yu ES, Kim JH, Lee SH, Yun S, Joo J, Lee DK, Lee JM, Kim HJ. Cognitive impairment differs between neuromyelitis optica spectrum disorders and multiple sclerosis. Mult Scler J. 2016;22:1850–8.

    Article  CAS  Google Scholar 

  42. Eizaguirre MB, Alonso R, Vanotti S, Garcea O. Cognitive impairment in neuromyelitis optica spectrum disorderss: What do we know? Mult Scler Relat Disord. 2017;18:225–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medicine Scientific Key Research Project of Chongqing Municipal Health and Family Planning Commission of China (NO. 2016ZDXM002), the Chongqing Basic Research and Frontier Exploration Project of Chongqing Science and Technology Commission (NO. cstc2018jcyjAX0584), the National Key Research and Development Plan of Ministry of Science and Technology of the People’s Republic of China (NO. 2016YFC0107109), the Medical Scientific Youth Project of Chongqing Municipal Health and Family Planning Commission of China (NO. 2018QNXM004), and the National Natural Science Foundation of China (NO. 31800823).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongmei Li.

Ethics declarations

Conflict of interest

Y. Han, Y. Liu, C. Zeng, Q. Luo, H. Xiong, X. Zhang and Y. Li declare that they have no competing interests.

Ethical standards

This study was approved by the local ethics committee of the First Affiliated Hospital of Chongqing Medical University, Chongqing, China, and written informed consent was obtained from all subjects.

Additional information

The authors Yongliang Han and Yi Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Liu, Y., Zeng, C. et al. Functional Connectivity Alterations in Neuromyelitis Optica Spectrum Disorder. Clin Neuroradiol 30, 559–568 (2020). https://doi.org/10.1007/s00062-019-00802-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-019-00802-3

Keywords

Navigation