Skip to main content
Log in

Hemodynamics of Focal Versus Global Growth of Small Cerebral Aneurysms

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Background and Purpose

Hemodynamics play a driving role in the life cycle of brain aneurysms from initiation through growth until eventual rupture. The specific factors behind aneurysm growth, especially in small aneurysms, are not well elucidated. The goal of this study was to differentiate focal versus general growth and to analyze the hemodynamic microenvironment at the sites of enlargement in small cerebral aneurysms.

Materials and Methods

Small aneurysms showing growth during follow-up were identified from our prospective aneurysm database. Three dimensional rotational angiography (3DRA) studies before and after morphology changes were available for all aneurysms included in the study, allowing for detailed shape and computational fluid dynamic (CFD) based hemodynamic analysis. Six patients fulfilled the inclusion criteria.

Results

Two different types of change were observed: focal growth, with bleb or blister formation in three, and global aneurysm enlargement accompanied by neck broadening in other three patients. Areas of focal growth showed low shear conditions with increased oscillations at the site of growth (a low wall shear stress [WSS] and high oscillatory shear index [OSI]). Global aneurysm enlargement was associated with increased WSS coupled with a high spatial wall shear stress gradient (WSSG).

Conclusion

For different aneurysm growth types, distinctive hemodynamic microenvironment may be responsible and temporal–spatial changes of the pathologic WSS would have the inciting effect. We suggest the distinction of focal and global growth types in future hemodynamic and histological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

ICA:

Internal carotid artery

MRA:

Magnetic resonance angiography

CTA:

Computed tomographic angiography

3DRA:

Three-dimensional rotational angiography

WSS:

Wall shear stress

WSSG:

Wall shear stress gradient

OSI:

Oscillatory shear index

GA:

Growth area (of the aneurysm wall)

LVF:

Low value fraction

HVF:

High value fraction

DSA:

Digital subtraction angiography

STL:

STereoLithography

References

  1. Morita A, Kirino T, Hashi K, Aoki N, Fukuhara S, Hashimoto N, Nakayama T, Sakai M, Teramoto A, Tominari S, Yoshimoto T. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med. 2012;366:2474–82.

    Article  PubMed  Google Scholar 

  2. Wiebers DO, Whisnant JP, Huston J 3rd, Meissner I, Brown RD Jr, Piepgras DG, Forbes GS, Thielen K, Nichols D, O’Fallon WM, Peacock J, Jaeger L, Kassell NF, Kongable-Beckman GL, Torner JC; International Study of Unruptured Intracranial Aneurysms Investigators. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362:103–10.

    Article  PubMed  Google Scholar 

  3. Greving JP, Wermer MJH, Brown RD, Morita A, Juvela S, Yonekura M, Ishibashi T, Torner JC, Nakayama T, Rinkel GJE, Algra A. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol. 2014;13:59–66.

    Article  PubMed  Google Scholar 

  4. Brinjikji W, Zhu YQ, Lanzino G, Cloft HJ, Murad MH, Wang Z, Kallmes DF. Risk factors for growth of intracranial aneurysms: a systematic review and meta-analysis. AJNR Am J Neuroradiol. 2016;37:615–20.

    Article  CAS  PubMed  Google Scholar 

  5. Meng H, Wang Z, Hoi Y, Gao L, Metaxa E, Swartz DD, Kolega J. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke. 2007;38:1924–31.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Metaxa E, Tremmel M, Natarajan SK, Xiang J, Paluch RA, Mandelbaum M, Siddiqui AH, Kolega J, Mocco J, Meng H. Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model. Stroke. 2010;41:1774–82.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gondar R, Gautschi OP, Cuony J, Perren F, Jägersberg M, Corniola MV, Schatlo B, Molliqaj G, Morel S, Kulcsár Z, Mendes Pereira V, Rüfenacht D, Schaller K, Bijlenga P. Unruptured intracranial aneurysm follow-up and treatment after morphological change is safe: observational study and systematic review. J Neurol Neurosurg Psychiatr. 2016;87:1277–82.

    Article  Google Scholar 

  8. Backes D, Vergouwen MD, Tiel Groenestege AT, Bor AS, Velthuis BK, Greving JP, Algra A, Wermer MJ, van Walderveen MA, terBrugge KG, Agid R, Rinkel GJ. PHASES score for prediction of Intracranial aneurysm growth. Stroke. 2015;46:1221–6.

    Article  PubMed  Google Scholar 

  9. Reymond P, Merenda F, Perren F, Rüfenacht D, Stergiopulos N. Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol. 2009;297:H208–H22.

    Article  CAS  PubMed  Google Scholar 

  10. Pereira VM, Brina O, Gonzales MA, Narata AP, Bijlenga P, Schaller K, Lovblad KO, Ouared R. Evaluation of the influence of inlet boundary conditions on computational fluid dynamics for intracranial aneurysms: a virtual experiment. J Biomech. 2013;46:1531–9.

    Article  CAS  PubMed  Google Scholar 

  11. Backes D, Rinkel GJ, Laban KG, Algra A, Vergouwen MD. Patient- and aneurysm-specific risk factors for Intracranial aneurysm growth: a systematic review and meta-analysis. Stroke. 2016;47:951–7.

    Article  PubMed  Google Scholar 

  12. Bor AS, Groenestege TT, terBrugge KG, Agid R, Velthuis BK, Rinkel GJ, Wermer MJ. Clinical, radiological, and flow-related risk factors for growth of untreated. Stroke. 2015;46:42–8.

    Article  PubMed  Google Scholar 

  13. Burns JD, Huston J, Layton KF, Piepgras DG, Brown RD. Intracranial aneurysm enlargement on serial magnetic resonance angiography: frequency and risk factors. Stroke. 2009;40:406–11.

    Article  PubMed  Google Scholar 

  14. Inoue T, Shimizu H, Fujimura M, Saito A, Tominaga T. Annual rupture risk of growing unruptured cerebral aneurysms detected by magnetic resonance angiography: clinical article. J Neurosurg. 2012;117:20–5.

    Article  PubMed  Google Scholar 

  15. Villablanca JP, Duckwiler GR, Jahan R, Tateshima S, Martin NA, Frazee J, Gonzalez NR, Sayre J, Vinuela FV. Natural history of asymptomatic unruptured cerebral aneurysms evaluated at CT angiography: growth and rupture incidence and correlation with epidemiologic risk factors. Radiology. 2013;269:258–65.

    Article  PubMed  Google Scholar 

  16. Kolega J, Gao L, Mandelbaum M, Mocco J, Siddiqui AH, Natarajan SK, Meng H. Cellular and molecular responses of the basilar terminus to hemodynamics during intracranial aneurysm initiation in a rabbit model. J Vasc Res. 2011;48:429–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kulcsár Z, Ugron A, Marosfo IM, Berentei Z, Paál G, Szikora I. Hemodynamics of cerebral aneurysm initiation: the role of wall shear stress and spatial wall shear stress gradient. AJNR Am J Neuroradiol. 2011;32:587–94.

    Article  PubMed  Google Scholar 

  18. Szikora I, Paal G, Ugron A, Nasztanovics F, Marosfoi M, Berentei Z, Kulcsar Z, Lee W, Bojtar I, Nyary I. Impact of aneurysmal geometry on intraaneurysmal flow: a computerized flow simulation study. Neuroradiology. 2008;50:411–21.

    Article  PubMed  Google Scholar 

  19. Cebral JR, Sheridan M, Putman CM. Hemodynamics and bleb formation in intracranial aneurysms. AJNR Am J Neuroradiol. 2010;31:304–10.

    Article  CAS  PubMed  Google Scholar 

  20. Shojima M, Nemoto S, Morita A, Oshima M, Watanabe E, Saito N. Role of shear stress in the blister formation of cerebral aneurysms. Neurosurgery. 2010;67:1268–74. discussion 1274–5.

    Article  PubMed  Google Scholar 

  21. Tanoue T, Tateshima S, Villablanca JP, Vinuela F, Tanishita K. Wall shear stress distribution inside growing cerebral aneurysm. AJNR Am J Neuroradiol. 2011;32:1732–7.

    Article  CAS  PubMed  Google Scholar 

  22. Sugiyama S, Meng H, Funamoto K, Inoue T, Fujimura M, Nakayama T, Omodaka S, Shimizu H, Takahashi A, Tominaga T. Hemodynamic analysis of growing intracranial aneurysms arising from a posterior inferior cerebellar artery. World Neurosurg. 2012;78:462–8.

    Article  PubMed  Google Scholar 

  23. Russell JH, Kelson N, Barry M, Pearcy M, Fletcher DF, Winter CD. Computational fluid dynamic analysis of intracranial aneurysmal bleb formation. Neurosurgery. 2013;73:1061–8. discussion 1068–9.

    Article  PubMed  Google Scholar 

  24. Sugiyama SI, Endo H, Omodaka S, Endo T, Niizuma K, Rashad S, Nakayama T, Funamoto K, Ohta M, Tominaga T. Daughter sac formation related to blood inflow jet in an intracranial aneurysm. World Neurosurg. 2016;96:396–402.

    Article  PubMed  Google Scholar 

  25. Boussel L, Rayz V, McCulloch C, Martin A, Acevedo-Bolton G, Lawton M, Higashida R, Smith WS, Young WL, Saloner D. Aneurysm growth occurs at region of low wall shear stress: patient-specific. Stroke. 2008;39:2997–3002.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Brinjikji W, Chung BJ, Jimenez C, Putman C, Kallmes DF, Cebral JR. Hemodynamic differences between unstable and stable unruptured aneurysms independent of size and location: a pilot study. J Neurointerv Surg. 2016;9:376–80.

    Article  PubMed  Google Scholar 

  27. Sforza DM, Kono K, Tateshima S, Vinuela F, Putman C, Cebral JR. Hemodynamics in growing and stable cerebral aneurysms. J Neurointerv Surg. 2016;8:407–12.

    Article  PubMed  Google Scholar 

  28. Koffijberg H, Buskens E, Algra A, Wermer MJ, Rinkel GJ. Growth rates of intracranial aneurysms: exploring constancy. J Neurosurg. 2008;109:176–85.

    Article  PubMed  Google Scholar 

  29. Zhang Y, Mu S, Chen J, Wang S, Li H, Yu H, Jiang F, Yang X. Hemodynamic analysis of intracranial aneurysms with daughter blebs. Eur Neurol. 2011;66:359–67.

    Article  PubMed  Google Scholar 

  30. Meng H, Tutino VM, Xiang J, Siddiqui A. High WSS or low WSS? Complex interactions of hemodynamics with intracranial. AJNR Am J Neuroradiol. 2014;35:1254–62.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu YQ, Li MH, Yan L, Tan HQ, Cheng YS. Arterial wall degeneration plus hemodynamic insult cause arterial wall remodeling. J Neuropathol Exp Neurol. 2014;73:808–19.

    Article  PubMed  Google Scholar 

  32. Cebral J, Ollikainen E, Chung BJ, Mut F, Sippola V, Jahromi BR, Tulamo R, Hernesniemi J, Niemelä M, Robertson A, Frösen J. Flow conditions in the intracranial aneurysm lumen are associated with inflammation and degenerative changes of the aneurysm wall. AJNR Am J Neuroradiol. 2017;38:119–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Swiss National Science Foundation grants (SNF 32003B_160222 and SNF 320030_156813).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsolt Kulcsár.

Ethics declarations

Conflict of interest

P. Machi, R. Ouared, O. Brina, P. Bouillot, H. Yilmaz, M.I. Vargas, R. Gondar, P. Bijlenga, K.O. Lovblad and Z. Kulcsár declare that they have no competing interests.

Caption Electronic Supplementary Material

Materials and methods

62_2017_640_MOESM2_ESM.jpg

OSI, peak systolic WSSG (Pa/µm) and WSS (Pa) in aneurysms and growth areas for patients p2, p5, p6. Patient representation is row-like. Columns from left to right represent for each patient, the growth area, and the spatial frequency distribution of OSI, peak systolic WSSG and WSS, over the aneurysm (blue) and growth area (yellow), respectively. Medallions, cast the zoom on distributions in growth areas

62_2017_640_MOESM3_ESM.jpg

Columns B, D and F, show the histograms (spatial density distribution functions) of OSI, peak systolic WSSG (Pa/µm) and WSS (Pa) in aneurysms (blue) and growth areas (yellow) for patients p1, p3, p4. Medallions, cast the zoom on distributions in growth areas. Columns A, C and E represent the clusterization (in red) of OSI, peak systolic WSSG and WSS patterns in overall growth areas (green), respectively. Patient representation is row-like

Streamlines (colored by velocity) at peak systolic for all cases. The white arrows show the regions of growth

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machi, P., Ouared, R., Brina, O. et al. Hemodynamics of Focal Versus Global Growth of Small Cerebral Aneurysms. Clin Neuroradiol 29, 285–293 (2019). https://doi.org/10.1007/s00062-017-0640-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-017-0640-6

Keywords

Navigation